1
|
Matulyte G, Parciauskaite V, Bjekic J, Pipinis E, Griskova-Bulanova I. Gamma-Band Auditory Steady-State Response and Attention: A Systemic Review. Brain Sci 2024; 14:857. [PMID: 39335353 PMCID: PMC11430480 DOI: 10.3390/brainsci14090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Auditory steady-state response (ASSR) is the result of the brain's ability to follow and entrain its oscillatory activity to the phase and frequency of periodic auditory stimulation. Gamma-band ASSR has been increasingly investigated with intentions to apply it in neuropsychiatric disorders diagnosis as well as in brain-computer interface technologies. However, it is still debatable whether attention can influence ASSR, as the results of the attention effects of ASSR are equivocal. In our study, we aimed to systemically review all known articles related to the attentional modulation of gamma-band ASSRs. The initial literature search resulted in 1283 papers. After the removal of duplicates and ineligible articles, 49 original studies were included in the final analysis. Most analyzed studies demonstrated ASSR modulation with differing attention levels; however, studies providing mixed or non-significant results were also identified. The high versatility of methodological approaches including the utilized stimulus type and ASSR recording modality, as well as tasks employed to modulate attention, were detected and emphasized as the main causality of result inconsistencies across studies. Also, the impact of training, inter-individual variability, and time of focus was addressed.
Collapse
Affiliation(s)
- Giedre Matulyte
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| | - Vykinta Parciauskaite
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| | - Jovana Bjekic
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11000 Belgrade, Serbia
| | - Evaldas Pipinis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| | - Inga Griskova-Bulanova
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
2
|
Yokota Y, Tanaka K, Chang M, Naruse Y, Imamura Y, Fujii S. Gamma music: a new acoustic stimulus for gamma-frequency auditory steady-state response. Front Hum Neurosci 2024; 17:1287018. [PMID: 38273878 PMCID: PMC10808749 DOI: 10.3389/fnhum.2023.1287018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A frequency range exceeding approximately 30 Hz, denoted as the gamma frequency range, is associated with various cognitive functions, consciousness, sensory integration, short-term memory, working memory, encoding and maintenance of episodic memory, and retrieval processes. In this study, we proposed a new form of gamma stimulation, called gamma music, combining 40 Hz auditory stimuli and music. This gamma music consists of drums, bass, and keyboard sounds, each containing a 40 Hz frequency oscillation. Since 40 Hz stimuli are known to induce an auditory steady-state response (ASSR), we used the 40 Hz power and phase locking index (PLI) as indices of neural activity during sound stimulation. We also recorded subjective ratings of each sound through a questionnaire using a visual analog scale. The gamma music, gamma drums, gamma bass, and gamma keyboard sounds showed significantly higher values in 40 Hz power and PLI compared to the control music without a 40 Hz oscillation. Particularly, the gamma keyboard sound showed a potential to induce strong ASSR, showing high values in these indices. In the subjective ratings, the gamma music, especially the gamma keyboard sound, received more relaxed, comfortable, preferred, pleasant, and natural impressions compared to the control music with conventional gamma stimulation. These results indicate that our proposed gamma music has potential as a new method for inducing ASSR. Particularly, the gamma keyboard sound proved to be an effective acoustic source for inducing a strong ASSR while preserving the comfortable and pleasant sensation of listening to music. Our developed gamma music, characterized by its pleasantness to the human ear, offers a significant advantage for the long-term use of gamma stimulation. The utilization of this music could potentially reduce the physical and psychological burden on participants compared to conventional 40 Hz stimuli. This music is not only expected to contribute to fundamental neuroscience research utilizing ASSR but also to facilitate the implementation of gamma music-based interventions aimed at enhancing human cognitive functions in everyday life.
Collapse
|
3
|
Wascher E, Reiser J, Rinkenauer G, Larrá M, Dreger FA, Schneider D, Karthaus M, Getzmann S, Gutberlet M, Arnau S. Neuroergonomics on the Go: An Evaluation of the Potential of Mobile EEG for Workplace Assessment and Design. HUMAN FACTORS 2023; 65:86-106. [PMID: 33861182 PMCID: PMC9846382 DOI: 10.1177/00187208211007707] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We demonstrate and discuss the use of mobile electroencephalogram (EEG) for neuroergonomics. Both technical state of the art as well as measures and cognitive concepts are systematically addressed. BACKGROUND Modern work is increasingly characterized by information processing. Therefore, the examination of mental states, mental load, or cognitive processing during work is becoming increasingly important for ergonomics. RESULTS Mobile EEG allows to measure mental states and processes under real live conditions. It can be used for various research questions in cognitive neuroergonomics. Besides measures in the frequency domain that have a long tradition in the investigation of mental fatigue, task load, and task engagement, new approaches-like blink-evoked potentials-render event-related analyses of the EEG possible also during unrestricted behavior. CONCLUSION Mobile EEG has become a valuable tool for evaluating mental states and mental processes on a highly objective level during work. The main advantage of this technique is that working environments don't have to be changed while systematically measuring brain functions at work. Moreover, the workflow is unaffected by such neuroergonomic approaches.
Collapse
Affiliation(s)
- Edmund Wascher
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Julian Reiser
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Gerhard Rinkenauer
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Mauro Larrá
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Felix A. Dreger
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Daniel Schneider
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Melanie Karthaus
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Stephan Getzmann
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | | | - Stefan Arnau
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| |
Collapse
|
4
|
Lee PL, Lee TM, Lee WK, Chu NN, Shelepin YE, Hsu HT, Chang HH. The Full Informational Spectral Analysis for Auditory Steady-State Responses in Human Brain Using the Combination of Canonical Correlation Analysis and Holo-Hilbert Spectral Analysis. J Clin Med 2022; 11:jcm11133868. [PMID: 35807153 PMCID: PMC9267805 DOI: 10.3390/jcm11133868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Auditory steady-state response (ASSR) is a translational biomarker for several neurological and psychiatric disorders, such as hearing loss, schizophrenia, bipolar disorder, autism, etc. The ASSR is sinusoidal electroencephalography (EEG)/magnetoencephalography (MEG) responses induced by periodically presented auditory stimuli. Traditional frequency analysis assumes ASSR is a stationary response, which can be analyzed using linear analysis approaches, such as Fourier analysis or Wavelet. However, recent studies have reported that the human steady-state responses are dynamic and can be modulated by the subject’s attention, wakefulness state, mental load, and mental fatigue. The amplitude modulations on the measured oscillatory responses can result in the spectral broadening or frequency splitting on the Fourier spectrum, owing to the trigonometric product-to-sum formula. Accordingly, in this study, we analyzed the human ASSR by the combination of canonical correlation analysis (CCA) and Holo-Hilbert spectral analysis (HHSA). The CCA was used to extract ASSR-related signal features, and the HHSA was used to decompose the extracted ASSR responses into amplitude modulation (AM) components and frequency modulation (FM) components, in which the FM frequency represents the fast-changing intra-mode frequency and the AM frequency represents the slow-changing inter-mode frequency. In this paper, we aimed to study the AM and FM spectra of ASSR responses in a 37 Hz steady-state auditory stimulation. Twenty-five healthy subjects were recruited for this study, and each subject was requested to participate in two auditory stimulation sessions, including one right-ear and one left-ear monaural steady-state auditory stimulation. With the HHSA, both the 37 Hz (fundamental frequency) and the 74 Hz (first harmonic frequency) auditory responses were successfully extracted. Examining the AM spectra, the 37 Hz and the 74 Hz auditory responses were modulated by distinct AM spectra, each with at least three composite frequencies. In contrast to the results of traditional Fourier spectra, frequency splitting was seen at 37 Hz, and a spectral peak was obscured at 74 Hz in Fourier spectra. The proposed method effectively corrects the frequency splitting problem resulting from time-varying amplitude changes. Our results have validated the HHSA as a useful tool for steady-state response (SSR) studies so that the misleading or wrong interpretation caused by amplitude modulation in the traditional Fourier spectrum can be avoided.
Collapse
Affiliation(s)
- Po-Lei Lee
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
- Correspondence: (P.-L.L.); (H.-H.C.)
| | - Te-Min Lee
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
| | - Wei-Keung Lee
- Department of Rehabilitation, Taoyuan General Hospital, Taoyuan 330, Taiwan;
| | | | - Yuri E. Shelepin
- The Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | - Hao-Teng Hsu
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
| | - Hsiao-Huang Chang
- Division of Cardiovascular Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Correspondence: (P.-L.L.); (H.-H.C.)
| |
Collapse
|
5
|
Xu M, Chen D, Li H, Wang H, Yang LZ. The Cycling Brain in the Workplace: Does Workload Modulate the Menstrual Cycle Effect on Cognition? Front Behav Neurosci 2022; 16:856276. [PMID: 35722191 PMCID: PMC9201761 DOI: 10.3389/fnbeh.2022.856276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
Recent decades have witnessed increased research efforts to clarify how the menstrual cycle influence females’ cognitive and emotional functions. Despite noticeable progress, the research field faces the challenges of inconsistency and low generalizability of research findings. Females of reproductive ages are a heterogeneous population. Generalizing the results of female undergraduates to women in the workplace might be problematic. Furthermore, the critical cognitive processes for daily life and work deserve additional research efforts for improved ecological validity. Thus, this study investigates cognitive performance across the menstrual cycle using a sample of young nurses with similar duties. We developed a mini-computerized cognitive battery to assess four mental skills critical for nursing work: cognitive flexibility, divided attention, response inhibition, and working memory. Participants completed the cognitive battery at menses, late-follicular, and mid-luteal phases. In addition, they were classified into low- and high workload groups according to their subjective workload ratings. Our results demonstrate a general mid-luteal cognitive advantage. Besides, this study reveals preliminary evidence that workload modulates the menstrual cycle effect on cognition. Only females of low workload manifest the mid-luteal cognitive advantage on divided attention and response inhibition, implying that a suitable workload threshold might be necessary for regular neuro-steroid interactions. Thus, this study advocates the significance of research focusing on the cycling brain under workloads.
Collapse
Affiliation(s)
- Min Xu
- Bengbu Medical College, Bengbu, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dandan Chen
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Hai Li
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hongzhi Wang
- Bengbu Medical College, Bengbu, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- *Correspondence: Hongzhi Wang,
| | - Li-Zhuang Yang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Li-Zhuang Yang,
| |
Collapse
|
6
|
Brockhoff L, Schindler S, Bruchmann M, Straube T. Effects of perceptual and working memory load on brain responses to task-irrelevant stimuli: Review and implications for future research. Neurosci Biobehav Rev 2022; 135:104580. [DOI: 10.1016/j.neubiorev.2022.104580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
|
7
|
Watanabe H, Higashi Y, Saga T, Hashizaki M, Yokota Y, Kataoka H, Nakajima H, Naruse Y. Eye-Fixation-Related Potentials (EFRPs) As a Predictor of Human Error Occurrences During a Visual Inspection Task. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5820-5823. [PMID: 34892443 DOI: 10.1109/embc46164.2021.9630308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Estimation of human attentional states using an electroencephalogram (EEG) has been demonstrated to help prevent human errors associated with the degradation. Since the use of the lambda response -one of eye-fixation-related potentials time-locked to the saccade offset- enables such estimation without external triggers, the measurements are compatible for an application in a real-world environment. With aiming to apply the lambda response as an index of human errors during the visual inspection, the current research elucidated whether the mean amplitude of the lambda response was a predictor of the number of inspection errors. EEGs were measured from 50 participants while inspecting the differences between two images of the circuit board. Twenty percent of the total number of image pairs included differences. The lambda response was obtained relative to a saccade offset starting a fixation of the inspection image. Participants conducted four sessions over two days (625 trials/ session, 2 sessions/ day). A Poisson regression of the number of inspection errors using a generalized linear mixed model showed that a coefficient of the mean amplitude of the lambda response was significant , suggesting that the response has a role in th$(\hat \beta = 0.24,p < 0.01)$e prediction of the number of human error occurrences in the visual inspection.
Collapse
|
8
|
Heijs JJ, Havelaar RJ, Fiedler P, van Wezel RJ, Heida T. Validation of Soft Multipin Dry EEG Electrodes. SENSORS 2021; 21:s21206827. [PMID: 34696039 PMCID: PMC8541549 DOI: 10.3390/s21206827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022]
Abstract
Current developments towards multipin, dry electrodes in electroencephalography (EEG) are promising for applications in non-laboratory environments. Dry electrodes do not require the application of conductive gel, which mostly confines the use of gel EEG systems to the laboratory environment. The aim of this study is to validate soft, multipin, dry EEG electrodes by comparing their performance to conventional gel EEG electrodes. Fifteen healthy volunteers performed three tasks, with a 32-channel gel EEG system and a 32-channel dry EEG system: the 40 Hz Auditory Steady-State Response (ASSR), the checkerboard paradigm, and an eyes open/closed task. Within-subject analyses were performed to compare the signal quality in the time, frequency, and spatial domains. The results showed strong similarities between the two systems in the time and frequency domains, with strong correlations of the visual (ρ = 0.89) and auditory evoked potential (ρ = 0.81), and moderate to strong correlations for the alpha band during eye closure (ρ = 0.81–0.86) and the 40 Hz-ASSR power (ρ = 0.66–0.72), respectively. However, delta and theta band power was significantly increased, and the signal-to-noise ratio was significantly decreased for the dry EEG system. Topographical distributions were comparable for both systems. Moreover, the application time of the dry EEG system was significantly shorter (8 min). It can be concluded that the soft, multipin dry EEG system can be used in brain activity research with similar accuracy as conventional gel electrodes.
Collapse
Affiliation(s)
- Janne J.A. Heijs
- TechMed Centre, Department of Biomedical Signals and Systems, University of Twente, 7522 NB Enschede, The Netherlands; or (T.H.)
- Correspondence:
| | - Ruben Jan Havelaar
- Donders Centre for Neuroscience, Department of Biophysics, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
| | - Richard J.A. van Wezel
- TechMed Centre, Department of Biomedical Signals and Systems, University of Twente, 7522 NB Enschede, The Netherlands; or (T.H.)
- Donders Centre for Neuroscience, Department of Biophysics, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Tjitske Heida
- TechMed Centre, Department of Biomedical Signals and Systems, University of Twente, 7522 NB Enschede, The Netherlands; or (T.H.)
| |
Collapse
|
9
|
Yagura H, Tanaka H, Kinoshita T, Watanabe H, Motomura S, Sudoh K, Nakamura S. Selective Attention Measurement of Experienced Simultaneous Interpreters Using EEG Phase-Locked Response. Front Hum Neurosci 2021; 15:581525. [PMID: 34163336 PMCID: PMC8215497 DOI: 10.3389/fnhum.2021.581525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
We quantified the electroencephalogram signals associated with the selective attention processing of experienced simultaneous interpreters and calculated the phase-locked responses evoked by a 40-Hz auditory steady-state response (40-Hz ASSR) and the values of robust inter-trial coherence (ITC) for environmental changes. Since we assumed that an interpreter's attention ability improves with an increase in the number of years of experience of simultaneous interpretation, we divided the participants into two groups based on their simultaneous interpretation experience: experts with more than 15 years of experience (E group; n = 7) and beginners with <1 year (B group; n = 15). We also compared two conditions: simultaneous interpretation (SI) and shadowing (SH). We found a significant interaction in the ITC between years of SI experience (E and B groups) and tasks (SI and SH). This result demonstrates that the number of years of SI experience influences selective attention during interpretation.
Collapse
Affiliation(s)
- Haruko Yagura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Tanaka
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Taiki Kinoshita
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Watanabe
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Shunnosuke Motomura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Katsuhito Sudoh
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Satoshi Nakamura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
10
|
Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Physiol Behav 2021; 228:113240. [PMID: 33188789 DOI: 10.1016/j.physbeh.2020.113240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/29/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Ignoring background sounds while focusing on a visual task is a necessary ability in everyday life. If attentional resources are shared between modalities, processing of task-irrelevant auditory information should become attenuated when attentional capacity is expended by visual demands. According to the early-filter model, top-down attenuation of auditory responses is possible at various stages of the auditory pathway through multiple recurrent loops. Furthermore, the adaptive filtering model of selective attention suggests that filtering occurs early when concurrent visual tasks are demanding (e.g., high load) and late when tasks are easy (e.g., low load). To test these models, this study examined the effects of three levels of visual load on auditory steady-state responses (ASSRs) at three modulation frequencies. Subjects performed a visual task with no, low, and high visual load while ignoring task-irrelevant sounds. The auditory stimuli were 500-Hz tones amplitude-modulated at 20, 40, or 80 Hz to target different processing stages of the auditory pathway. Results from bayesian analyses suggest that ASSRs are unaffected by visual load. These findings imply that attentional resources are modality specific and that the attentional filter of auditory processing does not vary with visual task demands.
Collapse
|
11
|
Yagura H, Tanaka H, Kinoshita T, Watanabe H, Motomura S, Sudoh K, Nakamura S. Analysis of selective attention processing on experienced simultaneous interpreters using EEG phase synchronization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:66-69. [PMID: 33017932 DOI: 10.1109/embc44109.2020.9175786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study analyzed the selective attention processing related to cognitive load on simultaneous interpretation (SI). We tested simultaneous interpreter's brain function using EEG signals and calculated inter-trial coherence (ITC) extracted by the 40-Hz auditory steady-state response (ASSR). In this experiment, we set two conditions as Japanese-English translation and Japanese shadowing cognition. We also compared two subject groups: S rank with more than 15 years of SI experience (n=7) and C rank with less than one year experience (n=15). As a result, the ITCs for S rank in interpreting conditions were more significantly increased than C rank in the shadowing conditions (ITC: p<0.001). Our results demonstrate that 40-Hz ASSR might be a good indicator of selective attention and cognitive load during SI in ecologically valid environmental conditions. It can also be used to detect attention and cognitive control dysfunction in ADHD or schizophrenia.
Collapse
|
12
|
Szychowska M, Wiens S. Visual load does not decrease the auditory steady-state response to 40-Hz amplitude-modulated tones. Psychophysiology 2020; 57:e13689. [PMID: 32944959 PMCID: PMC7757234 DOI: 10.1111/psyp.13689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
Abstract
The auditory pathway consists of multiple recurrent loops of afferent and efferent connections that extend from the cochlea up to the prefrontal cortex. The early‐filter theory proposes that these loops allow top‐down filtering of early and middle latency auditory responses. Furthermore, the adaptive filtering model suggests that the filtering of irrelevant auditory stimuli should start lower in the pathway during more demanding tasks. If so, the 40‐Hz auditory steady‐state responses (ASSRs) to irrelevant sounds should be affected by top‐down crossmodal attention to a visual task, and effects should vary with the load of the visual task. Because few studies have examined this possibility, we conducted two preregistered studies that manipulated visual load (Study 1: N = 43, Study 2: N = 45). Study 1 used two levels (low and high), and Study 2 used four levels (no, low, high, and very high). Subjects were asked to ignore a 500‐Hz task‐irrelevant tone that was amplitude‐modulated to evoke 40‐Hz ASSRs. Results from Bayesian analyses provided moderate to extreme support for no effect of load (or of a task) on ASSRs. Results also supported no interaction with time (i.e., over blocks, over minutes, or with changes in ASSRs that were synchronized with the onset of the visual stimuli). Further, results provided moderate support for no correlation between the effects of load and working memory capacity. Because the present findings support the robustness of ASSRs against manipulations of crossmodal attention, they are not consistent with the adaptive filtering model. The adaptive filtering model suggests that the filtering of irrelevant auditory stimuli should start lower in the auditory pathway during more demanding tasks. Two preregistered studies (N = 43, N = 45) examined the effects of visual perceptual load (from no to very high) on the 40‐Hz auditory steady‐state response (ASSR) to a task‐irrelevant tone. Bayesian analyses provided evidence for no effect of load. This robustness of ASSR against manipulations of crossmodal attention is not consistent with the adaptive filter model.
Collapse
Affiliation(s)
- Malina Szychowska
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Stefan Wiens
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Cerebral cortical networking for mental workload assessment under various demands during dual-task walking. Exp Brain Res 2019; 237:2279-2295. [DOI: 10.1007/s00221-019-05550-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/24/2019] [Indexed: 01/22/2023]
|