1
|
Gupta A, Bhushan B, Behera L. Neural response to sad autobiographical recall and sad music listening post recall reveals distinct brain activation in alpha and gamma bands. PLoS One 2023; 18:e0279814. [PMID: 36607985 PMCID: PMC9821717 DOI: 10.1371/journal.pone.0279814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Although apparently paradoxical, sad music has been effective in coping with sad life experiences. The underpinning brain neural correlates of this are not well explored. We performed Electroencephalography (EEG) source-level analysis for the brain during a sad autobiographical recall (SAR) and upon exposure to sad music. We specifically investigated the Cingulate cortex complex and Parahippocampus (PHC) regions, areas prominently involved in emotion and memory processing. Results show enhanced alpha band lag phase-synchronization in the brain during sad music listening, especially within and between the Posterior cingulate cortex (PCC) and (PHC) compared to SAR. This enhancement was lateralized for alpha1 and alpha2 bands in the left and right hemispheres, respectively. We also observed a significant increase in alpha2 brain current source density (CSD) during sad music listening compared to SAR and baseline resting state in the region of interest (ROI). Brain during SAR condition had enhanced right hemisphere lateralized functional connectivity and CSD in gamma band compared to sad music listening and baseline resting state. Our findings show that the brain during the SAR state had enhanced gamma-band activity, signifying increased content binding capacity. At the same time, the brain is associated with an enhanced alpha band activity while sad music listening, signifying increased content-specific information processing. Thus, the results suggest that the brain's neural correlates during sad music listening are distinct from the SAR state as well as the baseline resting state and facilitate enhanced content-specific information processing potentially through three-channel neural pathways-(1) by enhancing the network connectivity in the region of interest (ROI), (2) by enhancing local cortical integration of areas in ROI, and (3) by enhancing sustained attention. We argue that enhanced content-specific information processing possibly supports the positive experience during sad music listening post a sad experience in a healthy population. Finally, we propose that sadness has two different characteristics under SAR state and sad music listening.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
| | - Braj Bhushan
- Department of Humanities and Social Sciences, Indian Institute of Technology, Kanpur, India
| | - Laxmidhar Behera
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, India
- * E-mail:
| |
Collapse
|
2
|
Loewy J. Underlying Music Mechanisms Influencing the Neurology of Pain: An Integrative Model. Brain Sci 2022; 12:1317. [PMID: 36291251 PMCID: PMC9599384 DOI: 10.3390/brainsci12101317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 08/10/2023] Open
Abstract
Pain is often debilitating, and is associated with many pathologies, as either a cause or consequence. Pharmacological interventions, such as opioids, to manage pain may lead to potential problems, such as addiction. When pain is controlled and managed, it can prevent negative associated outcomes affiliated with disease. Music is a low-cost option that shows promise in the management of painful circumstances. Music therapy has provided potent options for pain relief across a variety of ages and populations. As a nonpharmacological alternative or complement lacking side effects, music interventions are growing in clinical application and research protocols. This article considers the neurological implications of varying kinds of pain to provide working considerations that preempt the use of music and music-therapy applications in treating pain.
Collapse
Affiliation(s)
- Joanne Loewy
- The Louis Armstrong Center for Music and Medicine, Mount Sinai Health System, Icahn School of Medicine, New York, NY 10003, USA
| |
Collapse
|
3
|
Tervaniemi M, Pousi S, Seppälä M, Tommi M. Brain oscillation recordings of the audience in a live concert-like setting. Cogn Process 2021; 23:329-337. [PMID: 34958421 PMCID: PMC9072464 DOI: 10.1007/s10339-021-01072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022]
Abstract
There are only a few previous EEG studies that were conducted while the audience is listening to live music. However, in laboratory settings using music recordings, EEG frequency bands theta and alpha are connected to music improvisation and creativity. Here, we measured EEG of the audience in a concert-like setting outside the laboratory and compared the theta and alpha power evoked by partly improvised versus regularly performed familiar versus unfamiliar live classical music. To this end, partly improvised and regular versions of pieces by Bach (familiar) and Melartin (unfamiliar) were performed live by a chamber trio. EEG data from left and right frontal and central regions of interest were analysed to define theta and alpha power during each performance. After the performances, the participants rated how improvised and attractive each of the performances were. They also gave their affective ratings before and after each performance. We found that theta power was enhanced during the familiar improvised Bach piece and the unfamiliar improvised Melartin piece when compared with the performance of the same piece performed in a regular manner. Alpha power was not modulated by manner of performance or by familiarity of the piece. Listeners rated partly improvised performances of a familiar Bach and unfamiliar Melartin piece as more improvisatory and innovative than the regular performances. They also indicated more joy and less sadness after listening to the unfamiliar improvised piece of Melartin and less fearful and more enthusiastic after listening to the regular version of Melartin than before listening. Thus, according to our results, it is possible to study listeners’ brain functions with EEG during live music performances outside the laboratory, with theta activity reflecting the presence of improvisation in the performances.
Collapse
Affiliation(s)
- Mari Tervaniemi
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, POB 9, 00014, University of Helsinki, Finland. .,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, POB 21, 00014, University of Helsinki, Finland.
| | - Saara Pousi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, POB 21, 00014, University of Helsinki, Finland
| | - Maaria Seppälä
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, POB 21, 00014, University of Helsinki, Finland
| | - Makkonen Tommi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, POB 21, 00014, University of Helsinki, Finland
| |
Collapse
|
4
|
Tanaka S. Mirror Neuron Activity During Audiovisual Appreciation of Opera Performance. Front Psychol 2021; 11:563031. [PMID: 33584402 PMCID: PMC7873040 DOI: 10.3389/fpsyg.2020.563031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
Opera is a performing art in which music plays the leading role, and the acting of singers has a synergistic effect with the music. The mirror neuron system represents the neurophysiological mechanism underlying the coupling of perception and action. Mirror neuron activity is modulated by the appropriateness of actions and clarity of intentions, as well as emotional expression and aesthetic values. Therefore, it would be reasonable to assume that an opera performance induces mirror neuron activity in the audience so that the performer effectively shares an embodied performance with the audience. However, it is uncertain which aspect of opera performance induces mirror neuron activity. It is hypothesized that although auditory stimuli could induce mirror neuron activity, audiovisual perception of stage performance is the primary inducer of mirror neuron activity. To test this hypothesis, this study sought to correlate opera performance with brain activity as measured by electroencephalography (EEG) in singers while watching an opera performance with sounds or while listening to an aria without visual stimulus. We detected mirror neuron activity by observing that the EEG power in the alpha frequency band (8-13 Hz) was selectively decreased in the frontal-central-parietal area when watching an opera performance. In the auditory condition, however, the alpha-band power did not change relative to the resting condition. This study illustrates that the audiovisual perception of an opera performance engages the mirror neuron system in its audience.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, Tokyo, Japan
| |
Collapse
|
5
|
Zhu Y, Zhang C, Poikonen H, Toiviainen P, Huotilainen M, Mathiak K, Ristaniemi T, Cong F. Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening. Brain Topogr 2020; 33:289-302. [PMID: 32124110 PMCID: PMC7182636 DOI: 10.1007/s10548-020-00758-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/20/2020] [Indexed: 01/15/2023]
Abstract
Recently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during freely listening to music. We used a data-driven method that combined music information retrieval with spatial Fourier Independent Components Analysis (spatial Fourier-ICA) to probe the interplay between the spatial profiles and the spectral patterns of the brain network emerging from music listening. Correlation analysis was performed between time courses of brain networks extracted from EEG data and musical feature time series extracted from music stimuli to derive the musical feature related oscillatory patterns in the listening brain. We found brain networks of musical feature processing were frequency-dependent. Musical feature time series, especially fluctuation centroid and key feature, were associated with an increased beta activation in the bilateral superior temporal gyrus. An increased alpha oscillation in the bilateral occipital cortex emerged during music listening, which was consistent with alpha functional suppression hypothesis in task-irrelevant regions. We also observed an increased delta-beta oscillatory activity in the prefrontal cortex associated with musical feature processing. In addition to these findings, the proposed method seems valuable for characterizing the large-scale frequency-dependent brain activity engaged in musical feature processing.
Collapse
Affiliation(s)
- Yongjie Zhu
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Chi Zhang
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hanna Poikonen
- Institute of Learning Sciences and Higher Education, ETH Zürich, Zürich, Switzerland
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Minna Huotilainen
- CICERO Learning Network and Cognitive Brain Research Unit, Faculty of Educational Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Tapani Ristaniemi
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China. .,Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland.
| |
Collapse
|
6
|
Abstract
Most studies examining the neural underpinnings of music listening have no specific instruction on how to process the presented musical pieces. In this study, we explicitly manipulated the participants' focus of attention while they listened to the musical pieces. We used an ecologically valid experimental setting by presenting the musical stimuli simultaneously with naturalistic film sequences. In one condition, the participants were instructed to focus their attention on the musical piece (attentive listening), whereas in the second condition, the participants directed their attention to the film sequence (passive listening). We used two instrumental musical pieces: an electronic pop song, which was a major hit at the time of testing, and a classical musical piece. During music presentation, we measured electroencephalographic oscillations and responses from the autonomic nervous system (heart rate and high-frequency heart rate variability). During passive listening to the pop song, we found strong event-related synchronizations in all analyzed frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). The neurophysiological responses during attentive listening to the pop song were similar to those of the classical musical piece during both listening conditions. Thus, the focus of attention had a strong influence on the neurophysiological responses to the pop song, but not on the responses to the classical musical piece. The electroencephalographic responses during passive listening to the pop song are interpreted as a neurophysiological and psychological state typically observed when the participants are 'drawn into the music'.
Collapse
|
7
|
Bannister S, Eerola T. Suppressing the Chills: Effects of Musical Manipulation on the Chills Response. Front Psychol 2018; 9:2046. [PMID: 30420822 PMCID: PMC6215865 DOI: 10.3389/fpsyg.2018.02046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Research on musical chills has linked the response to multiple musical features; however, there exists no study that has attempted to manipulate musical stimuli to enable causal inferences, meaning current understanding is based mainly on correlational evidence. In the current study, participants who regularly experience chills (N = 24) listened to an original and manipulated version of three pieces reported to elicit chills in a previous survey. Predefined chills sections were removed to create manipulated conditions. The effects of these manipulations on the chills response were assessed through continuous self-reports, and skin conductance measurements. Results show that chills were significantly less frequent following stimulus manipulation across all three pieces. Continuous measurements of chills intensity were significantly higher in the chills sections compared with control sections in the pieces; similar patterns were found for phasic skin conductance, although some differences emerged. Continuous measurements also correlated with psychoacoustic features such as loudness, brightness and roughness in two of the three pieces. Findings are discussed in terms of understanding structural and acoustic features and chills experiences within their local music contexts, the necessity of experimental approaches to musical chills, and the possibility of different features activating different underlying mechanisms.
Collapse
Affiliation(s)
- Scott Bannister
- Department of Music, Durham University, Durham, United Kingdom
| | - Tuomas Eerola
- Department of Music, Durham University, Durham, United Kingdom
| |
Collapse
|