1
|
Fariñas J, Rial-Vázquez J, Carballeira E, Giráldez-García MA, Colomer-Poveda D, Sevilla-Sánchez M, Márquez G, Rúa-Alonso M, Nine I, Aracama A, Fernandez-Del-Olmo M, Iglesias-Soler E. Cross education is modulated by set configuration in knee extension exercise. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:43-51. [PMID: 36856099 PMCID: PMC9976175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVES The main aim of this study was to determine the effects of set configuration during five weeks of unilateral knee extension resistance training on untrained knee extensors performance. METHODS Thirty-five subjects were randomly assigned to traditional training (TTG; n=14), rest-redistribution (RRG; n=10) and control group (CON; n=11). TTG and RRG groups trained the dominant knee extensors twice a week with the 10-repetition maximum (RM) load. TTG performed four sets of eight repetitions with three min-rest between sets and RRG 32 repetitions with 17.4 seconds of rest between each one. Before and after interventions, anthropometry, muscle thickness (MT), pennation angle (PA), 1RM, number of repetitions with 10RM pretest load (N10RM), maximum propulsive power (MPP) and maximum voluntary isometric contraction (MVIC) were measured. RESULTS 1RM of the untrained leg increased only in the TTG group (p<0.001, 10.3% compared with Pre-test). 1RM, MPP and N10RM increased in the trained leg in both TTG (p<0.001) and RRG (p<0.001). No changes occurred in MT or PA. CONCLUSIONS These results suggest that, when it is not possible to perform bilateral exercises (e.g., leg injury), traditional set configurations should be recommended to improve maximal voluntary force in the untrained leg.
Collapse
Affiliation(s)
- Juan Fariñas
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - Jessica Rial-Vázquez
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - Eduardo Carballeira
- Department of Physical Education and Sport, Faculty of Sport Sciences and Physical Education, Campus Bastiagueiro, University of A Coruna, Oleiros, Spain
| | - Manuel A Giráldez-García
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sport Sciences and Physical Education, Campus Bastiagueiro, University of A Coruna, Oleiros, Spain
| | - Marta Sevilla-Sánchez
- Department of Physical Education and Sport, Faculty of Sport Sciences and Physical Education, Campus Bastiagueiro, University of A Coruna, Oleiros, Spain
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sport Sciences and Physical Education, Campus Bastiagueiro, University of A Coruna, Oleiros, Spain
| | - María Rúa-Alonso
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - Iván Nine
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - Asier Aracama
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - Miguel Fernandez-Del-Olmo
- Area of Sport Sciences, Faculty of Sports Sciences and Physical Education, Center for Sport Studies, King Juan Carlos University, Madrid, Spain
| | - Eliseo Iglesias-Soler
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| |
Collapse
|
2
|
Effective corticospinal excitability neuromodulation elicited by short-duration concurrent and synchronized associative cortical and neuromuscular stimulations. Neurosci Lett 2022; 790:136910. [DOI: 10.1016/j.neulet.2022.136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
3
|
Wellauer V, Item JF, Bizzini M, Maffiuletti NA. Home-Based Nonoperative-Side Quadriceps Neuromuscular Electrical Stimulation Prevents Muscle Weakness Following Anterior Cruciate Ligament Reconstruction. J Clin Med 2022; 11:jcm11020466. [PMID: 35054160 PMCID: PMC8781752 DOI: 10.3390/jcm11020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
We compared the effectiveness of a home-based neuromuscular electrical stimulation (NMES) program applied to the quadriceps of the nonoperative side against sham-NMES as a complement to standard rehabilitation on knee extensor neuromuscular function in patients following anterior cruciate ligament (ACL) reconstruction. Twenty-four patients completed the 6 week NMES (n = 12) and sham-NMES (n = 12) post-operative interventions and were tested at different time points for neuromuscular function and self-reported knee function. Isometric, concentric, and eccentric strength deficits (muscle weakness) increased significantly from pre-surgery to 24 weeks post-surgery in the sham-NMES group (p < 0.05), while no significant changes were observed in the NMES group. On the stimulated (nonoperative) side, quadriceps voluntary activation and muscle thickness were respectively maintained (p > 0.05) and increased (p < 0.001) as a result of the NMES intervention, contrary to sham-NMES. Self-reported knee function improved progressively during the post-operative phase (p < 0.05), with no difference between the two groups. Compared to a sham-NMES intervention, a 6 week home-based NMES program applied to the quadriceps of the nonoperative side early after ACL reconstruction prevented the occurrence of knee extensor muscle weakness 6 months after surgery. We conclude that nonoperative-side NMES may help counteract muscle weakness after ACL reconstruction.
Collapse
Affiliation(s)
- Vanessa Wellauer
- Human Performance Lab., Schulthess Clinic, 8008 Zurich, Switzerland; (V.W.); (J.F.I.); (M.B.)
- Performance Diagnostics, Schulthess Clinic, 8008 Zurich, Switzerland
| | - Julia F. Item
- Human Performance Lab., Schulthess Clinic, 8008 Zurich, Switzerland; (V.W.); (J.F.I.); (M.B.)
| | - Mario Bizzini
- Human Performance Lab., Schulthess Clinic, 8008 Zurich, Switzerland; (V.W.); (J.F.I.); (M.B.)
| | - Nicola A. Maffiuletti
- Human Performance Lab., Schulthess Clinic, 8008 Zurich, Switzerland; (V.W.); (J.F.I.); (M.B.)
- Correspondence: ; Tel.: +41-(0)4-4385-7975
| |
Collapse
|
4
|
Pelet DCS, Orsatti FL. Effects of resistance training at different intensities of load on cross-education of muscle strength. APPLIED PHYSIOLOGY, NUTRITION, AND METABOLISM = PHYSIOLOGIE APPLIQUEE, NUTRITION ET METABOLISME 2021; 46:1279-1289. [PMID: 33984253 DOI: 10.1139/apnm-2021-0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objectives of this study were 1) to compare the extent of cross-transfer of high- versus low-load unilateral resistance training performed with external pacing of the movement (URTEP) and 2) to compare the time course of the two approaches. Fifty subjects were randomized to one of the following three groups: G80 [two sets at 80% and two sets at 40% of one maximum repetition (1RM), 1 concentric second and 3 eccentric seconds controlled by a metronome]; G40 (four sets at 40% of 1 RM, 1s and 3s controlled by a metronome); or CG (control group). At week 1, the G80 increased the elbow flexion 1RM (P<0.05) in contralateral arm. At week 4, both G80 and G40 increased the elbow flexion 1RM (P<0.05) in contralateral arm. However, a greater 1RM gain was observed in the G80 than in the G40 (P< .05). Thus, although higher-load URTEP seems to enhance the cross-education effect when compared to lower-load URTEP, the cross-education of dynamic strength can be achieved in the two approaches after four weeks. Many patients would benefit from cross-education of muscle strength through URPEP, even who are unable to exercise with high loads and in short periods of immobilization. Novelty bullets: (1) Unilateral resistance training promotes cross-education of dynamic muscle strength. (2) However, higher-load resistance training enhances the effects of cross-education of muscle strength.
Collapse
Affiliation(s)
| | - Fábio Lera Orsatti
- Federal University of Triangulo Mineiro , Department of Sport Sciences, Uberaba, Brazil;
| |
Collapse
|
5
|
Andrushko JW, Gould LA, Renshaw DW, Ekstrand C, Hortobágyi T, Borowsky R, Farthing JP. High Force Unimanual Handgrip Contractions Increase Ipsilateral Sensorimotor Activation and Functional Connectivity. Neuroscience 2020; 452:111-125. [PMID: 33197497 DOI: 10.1016/j.neuroscience.2020.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023]
Abstract
Imaging and brain stimulation studies seem to correct the classical understanding of how brain networks, rather than contralateral focal areas, control the generation of unimanual voluntary force. However, the scaling and hemispheric-specificity of network activation remain less understood. Using fMRI, we examined the effects of parametrically increasing right-handgrip force on activation and functional connectivity among the sensorimotor network bilaterally with 25%, 50%, and 75% maximal voluntary contractions (MVC). High force (75% MVC) unimanual handgrip contractions resulted in greater ipsilateral motor activation and functional connectivity with the contralateral hemisphere compared to a low force 25% MVC condition. The ipsilateral motor cortex activation and network strength correlated with relative handgrip force (% MVC). Increases in unimanual handgrip force resulted in greater ipsilateral sensorimotor activation and greater functional connectivity between hemispheres within the sensorimotor network.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Layla A Gould
- College of Medicine, Division of Neurosurgery, University of Saskatchewan, Saskatchewan, Canada
| | - Doug W Renshaw
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Chelsea Ekstrand
- The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ron Borowsky
- College of Medicine, Division of Neurosurgery, University of Saskatchewan, Saskatchewan, Canada; College of Arts and Science, Department of Psychology, Saskatchewan, Canada
| | | |
Collapse
|
6
|
Cabibel V, Héraud N, Perrey S, Oliver N, Alexandre F, Varray A. Is bilateral corticospinal connectivity impaired in patients with chronic obstructive pulmonary disease? J Physiol 2020; 598:4591-4602. [PMID: 32697330 DOI: 10.1113/jp279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS During moderate and high levels of quadriceps force production, the ipsilateral motor cortex is concomitantly activated with the contralateral motor cortex throughout the corpus callosum to generate the motor command. Chronic obstructive pulmonary disease (COPD) patients display a structurally impaired corpus callosum that may explain the reduced motor command in this population, which in turn contributes to COPD-related muscle weakness of the knee extensors. The study aimed to determine whether bilateral connectivity was impaired and ipsilateral activation was lowered during unilateral strength production of the knee extensors. Our results indicate impaired bilateral connectivity but preserved ipsilateral activation in patients during unilateral isometric contractions of 50% of maximum voluntary strength. The preservation of ipsilateral activation during force production despite impaired bilateral connectivity is consistent with a reorganization of bilateral motor network function that drives unilateral strength production. ABSTRACT The contralateral primary motor cortex (M1) is not the only brain area implicated in motor command generation. During moderate and high levels of quadriceps force production, the ipsilateral M1 is concomitantly activated. Such activation is mediated by the corpus callosum, the main component of bilateral connectivity. Structural damage to the corpus callosum has been observed in chronic obstructive pulmonary disease (COPD) patients, which might reduce ipsilateral activation and contribute to the lower motor command associated with COPD muscle weakness. We thus aimed to determine whether bilateral connectivity and ipsilateral activation were impaired in COPD. Twenty-two COPD patients and 21 healthy age-matched controls were evaluated by transcranial magnetic stimulation, at rest and during 50% of maximal voluntary isometric contraction (MVIC) of the dominant vastus lateralis muscle. Bilateral connectivity was determined by the ipsilateral silent period (iSP) during 50% MVIC. Ipsilateral activation was determined as the increase in ipsilateral excitability from rest to 50% MVIC. As expected, COPD patients had significantly lower MVIC (-25%, p = 0.03). These patients also showed a significantly lower iSP (-53%, p < 0.001) compared to controls. The ipsilateral excitability was increased in patients and controls (×2.5 and ×3.5, respectively, p < 0.001) but not differently between groups (p = 0.84). Despite impaired bilateral connectivity in COPD, ipsilateral activation was not increased. Reorganization in the patients' interhemispheric pathways could explain the preserved ipsilateral activation.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France.,Les Cliniques du Souffle, Groupe 5 Santé, France
| | - Nelly Héraud
- Les Cliniques du Souffle, Groupe 5 Santé, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | | | | | - Alain Varray
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
7
|
Cabibel V, Hordacre B, Perrey S. Implication of the ipsilateral motor network in unilateral voluntary muscle contraction: the cross-activation phenomenon. J Neurophysiol 2020; 123:2090-2098. [DOI: 10.1152/jn.00064.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Voluntary force production requires that the brain produces and transmits a motor command to the muscles. It is widely acknowledged that motor commands are executed from the primary motor cortex (M1) located in the contralateral hemisphere. However, involvement of M1 located in the ipsilateral hemisphere during moderate to high levels of unilateral muscle contractions (>30% of the maximum) has been disclosed in recent years. This phenomenon has been termed cross-activation. The activation of the ipsilateral M1 relies on complex inhibitory and excitatory interhemispheric interactions mediated via the corpus callosum and modulated according to the contraction level. The regulatory mechanisms underlying these interhemispheric interactions, especially excitatory ones, remain vague, and contradictions exist in the literature. In addition, very little is known regarding the possibility that other pathways could also mediate the cross-activation. In the present review, we will therefore summarize the concept of cross-activation during unilateral voluntary muscle contraction and explore the associated mechanisms and other nervous system pathways underpinning this response. A broader knowledge of these mechanisms would consequently allow a better comprehension of the motor system as a whole, as distant brain networks working together to produce the motor command.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
8
|
Strength Reduction in Unilateral Shoulder Pain: Is the Healthy Side Really Healthy in Rotator Cuff Disease? Am J Phys Med Rehabil 2019; 98:382-386. [PMID: 30702460 DOI: 10.1097/phm.0000000000001105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The primary aim was to ascertain whether unilateral shoulder pain is implicated in strength reduction both on the ipsilateral and contralateral side. Secondarily, we aimed to determine whether strength was affected by sonographic tendon abnormalities. DESIGN A total of 122 subjects were evaluated. Sixty-six female subjects with unilateral shoulder pain in the dominant arm were recruited. Abduction strength was measured in both the dominant and nondominant arm. High-resolution ultrasonography was also conducted on both shoulders. A match-paired control group (n = 66) composed of healthy volunteers underwent the same strength and sonography tests. Subjects with any radiographic anomaly were excluded from the control group. A mixed analysis of variance was performed to test the effect of unilateral shoulder pain on abduction strength. The effect of tendinopathy on shoulder strength was investigated using a mixed 2 × 2 analysis of variance. RESULTS Analysis of variance showed that patients with dominant shoulder pain had lower shoulder strength (11.65 ± 4.05 kg) when compared with controls (14.37 ± 4.00 kg; F = 10.454, P = 0.002). No statistically significant effects were found when comparing subjects with and without tendinopathy among the study group. CONCLUSIONS In patients with unilateral shoulder pain, abduction strength was found to be lower both on the ipsilateral and contralateral side. The presence of tendinopathy did not affect the reduction in strength. Future research is needed to substantiate these findings.
Collapse
|
9
|
Pietrangelo T, Bondi D, Kinel E, Verratti V. The Bottom-Up Rise Strength Transfer in Elderly After Endurance and Resistance Training: The BURST. Front Physiol 2019; 9:1944. [PMID: 30692938 PMCID: PMC6339983 DOI: 10.3389/fphys.2018.01944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of strength gain is highly relevant for sarcopenia and clinical aspect linked to aging. Recent advancements drive the interest toward the exercise-related cross-talk between distant tissues. We demonstrated the cross-talk between lower and upper limbs, we named the Bottom-Up Rise Strength Transfer (BURST), mainly linked to endurance training. In our opinion, this effect can be mainly related to systemic factors, likely circulating myokines and extracellular vesicles (recently defined in terms of “exerkines” and “exersomes”) whit an eventual concomitant reduction of a sub-clinical chronic inflammation. The neuronal mechanisms, even if to our sight less likely involved in this adaptation, need to be deeply investigated. Further studies are needed to better characterize the exercise-related BURST, concerning the specificity of different protocols and the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging e Clinical Sciences, Università degli Studi "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging e Clinical Sciences, Università degli Studi "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Edyta Kinel
- Department of Rehabilitation and Physiotherapy, Clinic of Rehabilitation, University of Medical Sciences, Poznań, Poland
| | - Vittore Verratti
- Department of Psychological, Humanistic and Territorial Sciences, Università degli Studi "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| |
Collapse
|
10
|
Leung H, Latella C, Lamon S, Hendy AM. The Reliability of Neurological Measurement in the Vastus Medialis: Implications for Research and Practice. Front Psychol 2018; 9:1857. [PMID: 30327634 PMCID: PMC6174212 DOI: 10.3389/fpsyg.2018.01857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022] Open
Abstract
The integrity of the corticomotor pathway is paramount in the optimal functioning of skeletal muscle. However, variability of neurophysiological assessment via peripheral nerve and transcranial magnetic stimulation can render interpretation difficult. Seldom evidence exists regarding the reliability of such measurements in the leg extensors, which have important locomotive and functional roles. This study aimed to assess the test-retest reliability of peripheral, corticospinal and intracortical responses in the vastus medialis. Transcranial magnetic and direct current electrical nerve stimulation were delivered to sixteen healthy young adults (8M and 8F) on two separate occasions. The Hoffmann reflex, maximal compound wave, motor evoked potential, corticospinal silent period, intracortical facilitation, and short-interval intracortical inhibition were recorded from the vastus medialis at rest, and during controlled submaximal voluntary contraction. Relative reliability was quantified using intra-class correlation coefficient (ICC2,1). Absolute reliability was quantified using standard error of measurement (SEm) and minimal detectable change (MDC). Corticospinal silent period, corticospinal silent period/motor evoked potential ratio, active motor evoked potential, maximal Hoffman reflex, and passive short-interval intracortical inhibition demonstrated “good to excellent” relative reliability (ICC ≥ 0.643). Intracortical facilitation demonstrated the lowest relative reliability (ICC = 0.420–0.908). Corticospinal silent period displayed the lowest absolute reliability (SEm ≤ 18.68%). Good reliability of the maximal compound wave, Hoffman reflex, motor evoked potential, and corticospinal silent period allow for reliable neurological evaluation of peripheral and corticospinal pathways in the vastus medialis. Future research should investigate reliability of the intracortical (short-interval intracortical inhibition and intracortical facilitation) measures by using different paired-pulse stimulus parameters. These findings hold important implications for neurophysiological assessment conducted in the leg extensor group.
Collapse
Affiliation(s)
- Hans Leung
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Christopher Latella
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Ashlee M Hendy
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| |
Collapse
|
11
|
Chaouachi A, Ben Othman A, Makhlouf I, Young JD, Granacher U, Behm DG. Global Training Effects of Trained and Untrained Muscles With Youth Can be Maintained During 4 Weeks of Detraining. J Strength Cond Res 2018; 33:2788-2800. [PMID: 29794891 DOI: 10.1519/jsc.0000000000002606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chaouachi, A, Ben Othman, A, Makhlouf, I, Young, JD, Granacher, U, and Behm, DG. Global training effects of trained and untrained muscles with youth can be maintained during 4 weeks of detraining. J Strength Cond Res 33(10): 2788-2800, 2019-Global (whole-body) effects of resistance training (i.e., cross-education) may be pervasive with children. Detraining induces less substantial deficits with children than adults. It was the objective of this study to investigate the global responses to 4 weeks of detraining after 8 weeks of unilateral leg press (LP) training in 10-13-year-old, pre-peak-height-velocity stage boys. Subjects were randomly separated into 2 unilateral resistance training groups (high load/low repetitions [HL-LR] and low load/high repetitions [LL-HR], and control group). Assessments at pre-training, post-training, and detraining included dominant and nondominant limbs, unilateral, 1 repetition maximum (1RM) and 60% 1RM LP, knee extension, knee flexion, elbow flexion, and handgrip maximal voluntary isometric contraction (MVIC), and countermovement jump (CMJ). All measures significantly increased from pre-test to detraining for both training programs, except for elbow flexion MVIC with increases only with HL-LR. All measures except CMJ and handgrip MVIC significantly decreased from post-test to detraining, except for elbow flexion MVIC with decreases only with HL-LR. The dominant trained limb experienced significantly greater LP improvements (pre- to detraining) and decrements (post- to detraining) with LP 1RM and 60% 1RM LP. In conclusion, youth HL-LR and LL-HR global training effects of trained and untrained limbs demonstrate similar benefits (pre- to detraining) and decrements (post- to detraining) with detraining. The findings emphasize that training any muscle group in a child can have positive global implications for improved strength and power that can persist over baseline measures for at least a month.
Collapse
Affiliation(s)
- Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| | - Aymen Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Issam Makhlouf
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - James D Young
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|