1
|
Rubin N, Hinson R, Saul K, Filer W, Hu X, Huang H(H. Modified motor unit properties in residual muscle following transtibial amputation. J Neural Eng 2024; 21:10.1088/1741-2552/ad1ac2. [PMID: 38176027 PMCID: PMC11214693 DOI: 10.1088/1741-2552/ad1ac2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Objective.Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activities of residual muscles are similar to that of intact muscles. This study sought to understand potential changes to motor unit (MU) properties after limb amputation.Approach.Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intacttibialis anterior(TA) andgastrocnemius(GA) muscles were recorded while subjects traced profiles targeting up to 20% and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of MU spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman's size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles.Main results.The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates.Significance.We showed peripheral neuromuscular damage also leads to spinal-level functional reorganizations. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses.
Collapse
Affiliation(s)
- Noah Rubin
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Robert Hinson
- UNC/NC State Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Katherine Saul
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| | - William Filer
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Xiaogang Hu
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - He (Helen) Huang
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| |
Collapse
|
2
|
Xia M, Chen C, Xu Y, Li Y, Sheng X, Ding H. Extracting Individual Muscle Drive and Activity From High-Density Surface Electromyography Signals Based on the Center of Gravity of Motor Unit. IEEE Trans Biomed Eng 2023; 70:2852-2862. [PMID: 37043313 DOI: 10.1109/tbme.2023.3266575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Neural interfacing has played an essential role in advancing our understanding of fundamental movement neurophysiology and the development of human-machine interface. However, direct neural interfaces from brain and nerve recording are currently limited in clinical areas for their invasiveness and high selectivity. Here, we applied the surface electromyogram (EMG) in studying the neural control of movement and proposed a new non-invasive way of extracting neural drive to individual muscles. Sixteen subjects performed isometric contractions to complete six hand tasks. High-density surface EMG signals (256 channels in total) recorded from the forearm muscles were decomposed into motor unit firing trains. The location of each decomposed motor unit was represented by its center of gravity and was put into clustering for distinct muscle regions. All the motor units in the same cluster served as a muscle-specific motor pool from which individual muscle drive could be extracted directly. Moreover, we cross-validated the self-clustered muscle regions by magnetic resonance imaging (MRI) recorded from the subjects' forearms. All motor units that fall within the MRI region are considered correctly clustered. We achieved a clustering accuracy of 95.72% ± 4.01% for all subjects. We provided a new framework for collecting experimental muscle-specific drives and generalized the way of surface electrode placement without prior knowledge of the targeting muscle architecture.
Collapse
|
3
|
Jones EJ, Guo Y, Martinez‐Valdes E, Negro F, Stashuk DW, Atherton PJ, Phillips BE, Piasecki M. Acute adaptation of central and peripheral motor unit features to exercise-induced fatigue differs with concentric and eccentric loading. Exp Physiol 2023; 108:827-837. [PMID: 37018481 PMCID: PMC10988466 DOI: 10.1113/ep091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
NEW FINDINGS What is the central question of this study? Conflicting evidence exists on motor unit (MU) firing rate in response to exercise-induced fatigue, possibly due to the contraction modality used: Do MU properties adapt similarly following concentric and eccentric loading? What is the main finding and its importance? MU firing rate increased following eccentric loading only despite a decline in absolute force. Force steadiness deteriorated following both loading methods. Central and peripheral MU features are altered in a contraction type-dependant manner, which is an important consideration for training interventions. ABSTRACT Force output of muscle is partly mediated by the adjustment of motor unit (MU) firing rate (FR). Disparities in MU features in response to fatigue may be influenced by contraction type, as concentric (CON) and eccentric (ECC) contractions demand variable amounts of neural input, which alters the response to fatigue. This study aimed to determine the effects of fatigue following CON and ECC loading on MU features of the vastus lateralis (VL). High-density surface (HD-sEMG) and intramuscular (iEMG) electromyography were used to record MU potentials (MUPs) from bilateral VLs of 12 young volunteers (six females) during sustained isometric contractions at 25% and 40% of the maximum voluntary contraction (MVC), before and after completing CON and ECC weighted stepping exercise. Multi-level mixed effects linear regression models were performed with significance assumed as P < 0.05. MVC decreased in both CON and ECC legs post-exercise (P < 0.0001), as did force steadiness at both 25% and 40% MVC (P < 0.004). MU FR increased in ECC at both contraction levels (P < 0.001) but did not change in CON. FR variability increased in both legs at 25% and 40% MVC following fatigue (P < 0.01). From iEMG measures at 25% MVC, MUP shape did not change (P > 0.1) but neuromuscular junction transmission instability increased in both legs (P < 0.04), and markers of fibre membrane excitability increased following CON only (P = 0.018). These data demonstrate that central and peripheral MU features are altered following exercise-induced fatigue and differ according to exercise modality. This is important when considering interventional strategies targeting MU function.
Collapse
Affiliation(s)
- Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Yuxiao Guo
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Eduardo Martinez‐Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Francesco Negro
- Department of Clinical and Experimental SciencesUniversità degli Studi di BresciaBresciaItaly
| | - Daniel W. Stashuk
- Department of Systems Design EngineeringUniversity of WaterlooWaterlooOntarioCanada
| | - Philip J. Atherton
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
4
|
Sawtelle M, Roddey T, Ellison J, Tseng SC. Gluteus Maximus Muscle Activation Characteristics During a Chair-Rise in Adults With Chronic Stroke. J Neurol Phys Ther 2022; 46:270-280. [PMID: 35561104 DOI: 10.1097/npt.0000000000000404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE A successful chair-rise is an important indicator of functional independence post-stroke. Lower extremity electromyographic analyses provide a basis for muscle activation from which clinical intervention protocols may be derived. Gluteus maximus activation during the chair-rise has not been thoroughly researched in the chronic stroke population. This study investigated the magnitude and onset of gluteus maximus activation during the chair-rise comparing adults post-stroke with healthy controls. METHODS In this cross-sectional study, adults with chronic stroke (n = 12) and healthy controls (n = 12) completed 4 natural-speed chair-rise trials. Magnitude and onset of bilateral gluteus maximus activation were measured during the movement with secondary comparative data from biceps femoris and vastus lateralis muscles. Kinetic and kinematic measurements were used to quantify chair-rise phases and movement cycle duration. RESULTS Significant decreases in paretic ( P = 0.002), and nonparetic ( P = 0.001) gluteus maximus magnitudes were noted post-stroke compared with ipsilateral extremities of healthy adults. Significant gluteus maximus onset delays were noted in paretic extremities compared with nonparetic extremities post-stroke ( P = 0.009) that were not apparent in comparative muscles. Similar onset times were noted when comparing the paretic extremity post-stroke to the ipsilateral extremity of healthy controls ( P = 0.714) despite prolonged movement cycle durations in those with chronic stroke ( P = 0.001). No onset delays were evident in the biceps femoris ( P = 0.72) or vastus lateralis ( P = 0.338) muscles. DISCUSSION AND CONCLUSIONS Despite apparent unilateral muscle weakness post-stroke, bilateral decreases in gluteus maximus activation magnitudes and compounding onset deficits of the paretic extremity were observed during chair-rising. Further research is needed to determine whether interventions maximizing bilateral activation magnitudes and improving temporal activation congruency during chair-rising will carry over to functional gainsVideo Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A387 ).
Collapse
Affiliation(s)
- Michelle Sawtelle
- Department of Public Health and Community Medicine, Doctor of Physical Therapy Phoenix Program, Tufts University, Phoenix, Arizona (M.S.); Institute of Health Sciences, School of Physical Therapy, Texas Woman's University, Houston (T.R., J.E.); and Department of Physical Therapy, School of Health Professions, University of Texas Medical Branch, Galveston (S.C.T.)
| | | | | | | |
Collapse
|
5
|
Rich MM, Housley SN, Nardelli P, Powers RK, Cope TC. Imbalanced Subthreshold Currents Following Sepsis and Chemotherapy: A Shared Mechanism Offering a New Therapeutic Target? Neuroscientist 2022; 28:103-120. [PMID: 33345706 PMCID: PMC8215085 DOI: 10.1177/1073858420981866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Both sepsis and treatment of cancer with chemotherapy are known to cause neurologic dysfunction. The primary defects seen in both groups of patients are neuropathy and encephalopathy; the underlying mechanisms are poorly understood. Analysis of preclinical models of these disparate conditions reveal similar defects in ion channel function contributing to peripheral neuropathy. The defects in ion channel function extend to the central nervous system where lower motoneurons are affected. In motoneurons the defect involves ion channels responsible for subthreshold currents that convert steady depolarization into repetitive firing. The inability to correctly translate depolarization into steady, repetitive firing has profound effects on motor function, and could be an important contributor to weakness and fatigue experienced by both groups of patients. The possibility that disruption of function, either instead of, or in addition to neurodegeneration, may underlie weakness and fatigue leads to a novel approach to therapy. Activation of serotonin (5HT) receptors in a rat model of sepsis restores the normal balance of subthreshold currents and normal motoneuron firing. If an imbalance of subthreshold currents also occurs in other central nervous system neurons, it could contribute to encephalopathy. We hypothesize that pharmacologically restoring the proper balance of subthreshold currents might provide effective therapy for both neuropathy and encephalopathy in patients recovering from sepsis or treatment with chemotherapy.
Collapse
Affiliation(s)
- Mark M. Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Stephen N. Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA,Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randall K. Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Timothy C. Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA,Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Dottor A, Camerone E, Job M, Barbiani D, Frisaldi E, Testa M. A new visual feedback-based system for the assessment of pinch force, endurance, accuracy and precision. A test-retest reliability study. HAND THERAPY 2021; 26:53-62. [PMID: 37969174 PMCID: PMC10634379 DOI: 10.1177/17589983211002550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 11/17/2023]
Abstract
Introduction Given that pinch is a precision grip involved in sustained submaximal activities, a Sustained Contraction (SC) task could be associated to Maximal Voluntary Contraction (MVC). To better evaluate the thumb-index system, the test-retest reliability of pinch MVC and SC, measured by a visual feedback-based pinch gauge was assessed. Methods 26 healthy participants performed MVC and SC in two separate sessions. SC required to maintain 40%MVC as long as possible and it was evaluated in terms of time, accuracy (Mean Distance between force trace and target force, MD), precision (Coefficient of Variability of force trace, CV). MD and CV analyses were conducted dividing the SC task into three equivalent time stages (beginning, middle, exhaustion). Relative Reliability (RR) was measured by Intraclass Correlation Coefficient, and Absolute Reliability (AR) was measured by Standard Error of Measurement and by Bland-Altman plot. Results MVC and Time showed high RR and AR in both hands. RR of MD and CV in right hand was excellent in the beginning and middle stages, and fair in the exhaustion one, showing decreasing reliability as fatigue increases. In the left hand RR of MD and CV was generally lower. MD showed excellent reliability in the beginning stage and good reliability in the other stages. CV showed fair relative reliability at both beginning and middle stages, excellent in the last one. Conversely, it was observed high AR of MD and CV in all stages in both hands. Conclusions All indices are reliable to assess motor control of thumb-index pinch in both hands.
Collapse
Affiliation(s)
- Alberto Dottor
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Eleonora Camerone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Mirko Job
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Diletta Barbiani
- Department of Neuroscience, University of Turin Medical School, Turin, Italy
| | - Elisa Frisaldi
- Department of Neuroscience, University of Turin Medical School, Turin, Italy
| | - Marco Testa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Negro F, Bathon KE, Nguyen JN, Bannon CG, Orizio C, Hunter SK, Hyngstrom AS. Impaired Firing Behavior of Individually Tracked Paretic Motor Units During Fatiguing Contractions of the Dorsiflexors and Functional Implications Post Stroke. Front Neurol 2020; 11:540893. [PMID: 33192970 PMCID: PMC7658471 DOI: 10.3389/fneur.2020.540893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: This study quantified stroke-related changes in the following: (1) the averaged discharge rate of motor units (individually tracked and untracked) identified from high-density electromyography (HD-EMG) recordings, (2) global muscle EMG properties of the dorsiflexors during a fatiguing contraction, and the relationship between task endurance and measures of leg function. Methods: Ten individuals with chronic stroke performed a sustained sub-maximal, isometric, fatiguing dorsiflexion contraction in paretic and non-paretic legs. Motor-unit firing behavior, task duration, maximal voluntary contraction strength (MVC), and clinical measures of leg function were obtained. Results: Compared to the non-paretic leg, the paretic leg task duration was shorter, and there was a larger exercise-related reduction in motor unit global rates, individually tracked discharge rates, and overall magnitude of EMG. Task duration of the paretic leg was more predictive of walking speed and lower extremity Fugl-Meyer scores compared to the non-paretic leg. Discussion: Paretic leg muscle fatigability is increased post stroke. It is characterized by impaired rate coding and recruitment and relates to measures of motor function.
Collapse
Affiliation(s)
- Francesco Negro
- Department of Clinical and Experimental Sciences, Research Center for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani", Università degli Studi di Brescia, Brescia, Italy
| | - Kathleen E Bathon
- Uniformed Services, University of Health Sciences, Bethesda, MD, United States
| | - Jennifer N Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cassidy G Bannon
- Uniformed Services, University of Health Sciences, Bethesda, MD, United States
| | - Claudio Orizio
- Department of Clinical and Experimental Sciences, Research Center for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani", Università degli Studi di Brescia, Brescia, Italy
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
8
|
McManus L, De Vito G, Lowery MM. Analysis and Biophysics of Surface EMG for Physiotherapists and Kinesiologists: Toward a Common Language With Rehabilitation Engineers. Front Neurol 2020; 11:576729. [PMID: 33178118 PMCID: PMC7594523 DOI: 10.3389/fneur.2020.576729] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Recent decades have seen a move toward evidence-based medicine to inform the clinical decision-making process with reproducible findings from high-quality research studies. There is a need for objective, quantitative measurement tools to increase the reliability and reproducibility of studies evaluating the efficacy of healthcare interventions, particularly in the field of physical and rehabilitative medicine. Surface electromyography (sEMG) is a non-invasive measure of muscle activity that is widely used in research but is under-utilized as a clinical tool in rehabilitative medicine. Other types of electrophysiological signals (e.g., electrocardiography, electroencephalography, intramuscular EMG) are commonly recorded by healthcare practitioners, however, sEMG has yet to successfully transition to clinical practice. Surface EMG has clear clinical potential as an indicator of muscle activation, however reliable extraction of information requires knowledge of the appropriate methods for recording and analyzing sEMG and an understanding of the underlying biophysics. These concepts are generally not covered in sufficient depth in the standard curriculum for physiotherapists and kinesiologists to encourage a confident use of sEMG in clinical practice. In addition, the common perception of sEMG as a specialized topic means that the clinical potential of sEMG and the pathways to application in practice are often not apparent. The aim of this paper is to address barriers to the translation of sEMG by emphasizing its benefits as an objective clinical tool and by overcoming its perceived complexity. The many useful clinical applications of sEMG are highlighted and examples provided to illustrate how it can be implemented in practice. The paper outlines how fundamental biophysics and EMG signal processing concepts could be presented to a non-technical audience. An accompanying tutorial with sample data and code is provided which could be used as a tool for teaching or self-guided learning. The importance of observing sEMG in routine use in clinic is identified as an essential part of the effective communication of sEMG recording and signal analysis methods. Highlighting the advantages of sEMG as a clinical tool and reducing its perceived complexity could bridge the gap between theoretical knowledge and practical application and provide the impetus for the widespread use of sEMG in clinic.
Collapse
Affiliation(s)
- Lara McManus
- Neuromuscular Systems Laboratory, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Giuseppe De Vito
- Neuromuscular Physiology Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Madeleine M Lowery
- Neuromuscular Systems Laboratory, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Effects of vibration therapy on neuromuscular efficiency & features of the EMG signal based on endurance test. J Bodyw Mov Ther 2020; 24:325-335. [DOI: 10.1016/j.jbmt.2020.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
|
10
|
Kumar RI, Mallette MM, Cheung SS, Stashuk DW, Gabriel DA. A method for editing motor unit potential trains obtained by decomposition of surface electromyographic signals. J Electromyogr Kinesiol 2020; 50:102383. [DOI: 10.1016/j.jelekin.2019.102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
|
11
|
Murphy S, Durand M, Negro F, Farina D, Hunter S, Schmit B, Gutterman D, Hyngstrom A. The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Front Physiol 2019; 10:545. [PMID: 31133877 PMCID: PMC6524339 DOI: 10.3389/fphys.2019.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
We quantified the relationship between the change in post-contraction blood flow with motor unit firing rates and metrics of fatigue during intermittent, sub-maximal fatiguing contractions of the knee extensor muscles after stroke. Ten chronic stroke survivors (>1-year post-stroke) and nine controls participated. Throughout fatiguing contractions, the discharge timings of individual motor units were identified by decomposition of high-density surface EMG signals. After five consecutive contractions, a blood flow measurement through the femoral artery was obtained using an ultrasound machine and probe designed for vascular measurements. There was a greater increase of motor unit firing rates from the beginning of the fatigue protocol to the end of the fatigue protocol for the control group compared to the stroke group (14.97 ± 3.78% vs. 1.99 ± 11.90%, p = 0.023). While blood flow increased with fatigue for both groups (p = 0.003), the magnitude of post-contraction blood flow was significantly greater for the control group compared to the stroke group (p = 0.004). We found that despite the lower magnitude of muscle perfusion through the femoral artery in the stroke group, blood flow has a greater impact on peripheral fatigue for the control group; however, we observed a significant correlation between change in blood flow and motor unit firing rate modulation (r2 = 0.654, p = 0.004) during fatigue in the stroke group and not the control group (r2 = 0.024, p < 0.768). Taken together, this data showed a disruption between motor unit firing rates and post-contraction blood flow in the stroke group, suggesting that there may be a disruption to common inputs to both the reticular system and the corticospinal tract. This study provides novel insights in the relationship between the hyperemic response to exercise and motor unit firing behavior for post-stroke force production and may provide new approaches for recovery by improving both blood flow and muscle activation simultaneously.
Collapse
Affiliation(s)
- Spencer Murphy
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli studi di Brescia, Brescia, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Brian Schmit
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison Hyngstrom
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
12
|
Enoka RM. Physiological validation of the decomposition of surface EMG signals. J Electromyogr Kinesiol 2019; 46:70-83. [PMID: 31003192 DOI: 10.1016/j.jelekin.2019.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/15/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022] Open
Abstract
Advances in technology have ushered in a new era in the measurement and interpretation of surface-recorded electromyographic (EMG) signals. These developments have included improvements in detection systems, the algorithms used to decompose the interference signals, and the strategies used to edit the identified waveforms. To evaluate the validity of the results obtained with this new technology, the purpose of this review was to compare the results achieved by decomposing surface-recorded EMG signals into the discharge times of single motor units with what is known about the rate coding characteristics of single motor units based on recordings obtained with intramuscular electrodes. The characteristics compared were peak discharge rate, saturation of discharge rate during submaximal contractions, rate coding during fast contractions, the association between oscillations in force and discharge rate, and adjustments during fatiguing contractions. The comparison indicates that some decomposition methods are able to replicate many of the findings derived from intramuscular recordings, but additional improvements in the methods are required. Critically, more effort needs to be focused on editing the waveforms identified by the decomposition algorithms. With adequate attention to detail, this technology has the potential to augment our knowledge on motor unit physiology and to provide useful approaches that are being translated into clinical practice.
Collapse
Affiliation(s)
- Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
13
|
Contralateral Lumbar to Sacral Nerve Rerouting for Hemiplegic Patients After Stroke: A Clinical Pilot Study. World Neurosurg 2019; 121:12-18. [DOI: 10.1016/j.wneu.2018.09.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 11/18/2022]
|