1
|
Cienfuegos M, Naceri A, Maycock J, Kõiva R, Ritter H, Schack T. Comparative analysis of motor skill acquisition in a novel bimanual task: the role of mental representation and sensorimotor feedback. Front Hum Neurosci 2024; 18:1425090. [PMID: 39323958 PMCID: PMC11422229 DOI: 10.3389/fnhum.2024.1425090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction This study investigates the multifaceted nature of motor learning in a complex bimanual task by examining the interplay between mental representation structures, biomechanics, tactile pressure, and performance. We developed a novel maze game requiring participants to maneuver a rolling sphere through a maze, exemplifying complex sequential coordination of vision and haptic control using both hands. A key component of this study is the introduction of cognitive primitives, fundamental units of cognitive and motor actions that represent specific movement patterns and strategies. Methods Participants were divided into two groups based on initial performance: poor performers (PPG) and good performers (GPG). The experimental setup employed motion capture and innovative tactile sensors to capture a detailed multimodal picture of the interaction process. Our primary aims were to (1) assess the effects of daily practice on task performance, biomechanics, and tactile pressure, (2) examine the relationship between changes in mental representation structures and skill performance, and (3) explore the interplay between biomechanics, tactile pressure, and cognitive representation in motor learning. Results Performance analysis showed that motor skills improved with practice, with the GPG outperforming the PPG in maze navigation efficiency. Biomechanical analysis revealed that the GPG demonstrated superior movement strategies, as indicated by higher peak velocities and fewer velocity peaks during task execution. Tactile feedback analysis showed that GPG participants applied more precise and focused pressure with their right-hand thumb, suggesting enhanced motor control. Cognitively, both groups refined their mental representation structures over time, but the GPG exhibited a more structured and sophisticated cognitive mapping of the task post-practice. Discussion The findings highlight the intertwined nature of biomechanical control, tactile feedback, and cognitive processing in motor skill acquisition. The results support established theories, such as the cognitive action architecture approach, emphasizing the role of mental representation in planning and executing motor actions. The integration of cognitive primitives in our analysis provides a theoretical framework that connects observable behaviors to underlying cognitive strategies, enhancing the understanding of motor learning across various contexts. Our study underscores the necessity of a holistic approach to motor learning research, recognizing the complex interaction between cognitive and motor processes in skill acquisition.
Collapse
Affiliation(s)
- Miguel Cienfuegos
- Neurocognition and Action-Biomechanics Group, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Abdeldjallil Naceri
- Munich School of Robotics and Machine Intelligence (MSRM), Technical University of Munich (TUM), Munich, Germany
| | | | - Risto Kõiva
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Helge Ritter
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Neuroinformatics Group, Bielefeld University, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action-Biomechanics Group, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Crotti M, Ortibus E, Ben Itzhak N, Kleeren L, Decraene L, Leenaerts N, Feys H, Mailleux L. The relation between visual functions, functional vision, and bimanual function in children with unilateral cerebral palsy. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 152:104792. [PMID: 39018791 DOI: 10.1016/j.ridd.2024.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Accurate visual information is needed to guide and perform efficient movements in daily life. AIMS To investigate the relation between visual functions, functional vision, and bimanual function in children with unilateral cerebral palsy (uCP). METHODS AND PROCEDURES In 49 children with uCP (7-15 y), we investigated the relation between stereoacuity (Titmus Stereo Fly test), visual perception (Test of Visual Perceptual Skills), visuomotor integration (Beery Buktenica Test of Visual-Motor Integration) and functional vision (Flemish cerebral visual impairment questionnaire) with bimanual dexterity (Tyneside Pegboard Test), bimanual coordination (Kinarm exoskeleton robot, Box opening task), and functional hand use (Children's Hand-use Experience Questionnaire; Assisting Hand Assessment) using correlations (rs) and elastic-net regularized regressions (d). OUTCOMES AND RESULTS Visual perception correlated with bimanual coordination (rs=0.407-0.436) and functional hand use (rs=0.380-0.533). Stereoacuity (rs=-0.404), visual perception (rs=-0.391 to -0.620), and visuomotor integration (rs=-0.377) correlated with bimanual dexterity. Functional vision correlated with functional hand use (rs=-0.441 to -0.458). Visual perception predicted bimanual dexterity (d=0.001-0.315), bimanual coordination (d=0.004-0.176), and functional hand use (d=0.001-0.345), whereas functional vision mainly predicted functional hand use (d=0.001-0.201). CONCLUSIONS AND IMPLICATIONS Visual functions and functional vision are related to bimanual function in children with uCP highlighting the importance of performing extensive visual assessment to better understand children's difficulties in performing bimanual tasks. WHAT THIS PAPER ADDS Previous findings showed that up to 62 % of children with unilateral cerebral palsy (uCP) present with visual impairment, which can further compromise their motor performance. However, the relation between visual and motor function has hardly been investigated in this population. This study makes a significant contribution to the literature by comprehensively investigating the multi-level relation between the heterogenous spectrum of visual abilities and bimanual function in children with uCP. We found that mainly decreased visual perception was related to decreased bimanual dexterity, bimanual coordination, and functional hand use while impairments in functional vision were only related to decreased functional hand use. Additionally, elastic-net regression models showed that visual assessments can predict bimanual function in children with uCP, however, effect sizes were only tiny to small. With our study, we demonstrated a relation between visual functions and bimanual function in children with uCP. These findings suggest the relevance of thoroughly examining visual functions in children with uCP to identify the presence of visual impairments that may further compromise their bimanual function.
Collapse
Affiliation(s)
- Monica Crotti
- KU Leuven, Department of Development and Regeneration, Locomotor and Neurological Disorders group, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium.
| | - Els Ortibus
- KU Leuven, Department of Development and Regeneration, Locomotor and Neurological Disorders group, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Pediatric Neurology, B-3000 Leuven, Belgium
| | - Nofar Ben Itzhak
- KU Leuven, Department of Development and Regeneration, Locomotor and Neurological Disorders group, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium
| | - Lize Kleeren
- KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium; KU Leuven, Department of Rehabilitation Sciences, B-3001 Leuven, Belgium; Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, B-3590, Diepenbeek, Belgium
| | - Lisa Decraene
- KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium; KU Leuven, Department of Rehabilitation Sciences, B-3001 Leuven, Belgium; Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, B-3590, Diepenbeek, Belgium
| | - Nicolas Leenaerts
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Research Group Psychiatry, B-3000 Leuven, Belgium; KU Leuven, Mind-Body Research, Department of Neurosciences, Research Group Psychiatry, B-3000 Leuven, Belgium
| | - Hilde Feys
- KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium; KU Leuven, Department of Rehabilitation Sciences, B-3001 Leuven, Belgium
| | - Lisa Mailleux
- KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium; KU Leuven, Department of Rehabilitation Sciences, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Cienfuegos M, Maycock J, Naceri A, Düsterhus T, Kõiva R, Schack T, Ritter H. Exploring motor skill acquisition in bimanual coordination: insights from navigating a novel maze task. Sci Rep 2024; 14:18887. [PMID: 39143119 PMCID: PMC11324764 DOI: 10.1038/s41598-024-69200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
In this study, we introduce a novel maze task designed to investigate naturalistic motor learning in bimanual coordination. We developed and validated an extended set of movement primitives tailored to capture the full spectrum of scenarios encountered in a maze game. Over a 3-day training period, we evaluated participants' performance using these primitives and a custom-developed software, enabling precise quantification of performance. Our methodology integrated the primitives with in-depth kinematic analyses and thorough thumb pressure assessments, charting the trajectory of participants' progression from novice to proficient stages. Results demonstrated consistent improvement in maze performance and significant adaptive changes in joint behaviors and strategic recalibrations in thumb pressure distribution. These findings highlight the central nervous system's adaptability in orchestrating sophisticated motor strategies and the crucial role of tactile feedback in precision tasks. The maze platform and setup emerge as a valuable foundation for future experiments, providing a tool for the exploration of motor learning and coordination dynamics. This research underscores the complexity of bimanual motor learning in naturalistic environments, enhancing our understanding of skill acquisition and task efficiency while emphasizing the necessity for further exploration and deeper investigation into these adaptive mechanisms.
Collapse
Affiliation(s)
- Miguel Cienfuegos
- Neurocognition and Action - Biomechanics Group, Bielefeld University, 33615, Bielefeld, Germany.
| | | | - Abdeldjallil Naceri
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
| | - Tobias Düsterhus
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| | - Risto Kõiva
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action - Biomechanics Group, Bielefeld University, 33615, Bielefeld, Germany
| | - Helge Ritter
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| |
Collapse
|
4
|
Gathy E, Cadiat N, Gerardin E, Lambert J, Herman B, Leeuwerck M, Bihin B, Vandermeeren Y. Bimanual coordinated motor skill learning in patients with a chronic cerebellar stroke. Exp Brain Res 2024; 242:1517-1531. [PMID: 38722346 DOI: 10.1007/s00221-024-06830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 05/23/2024]
Abstract
Cerebellar strokes induce coordination disorders that can affect activities of daily living. Evidence-based neurorehabilitation programs are founded on motor learning principles. The cerebellum is a key neural structure in motor learning. It is unknown whether and how well chronic cerebellar stroke individuals (CCSIs) can learn to coordinate their upper limbs through bimanual motor skill learning. The aim was to determine whether CCSIs could achieve bimanual skill learning through a serious game with the REAplan® robot and to compare CCSIs with healthy individuals (HIs). Over three consecutive days, sixteen CCSIs and eighteen HIs were trained on an asymmetric bimanual coordination task ("CIRCUIT" game) with the REAplan® robot, allowing quantification of speed, accuracy and coordination. The primary outcomes were the bimanual speed/accuracy trade-off (BiSAT) and bimanual coordination factor (BiCo). They were also evaluated on a bimanual REACHING task on Days 1 and 3. Correlation analyses between the robotic outcomes and clinical scale scores were computed. Throughout the sessions, BiSAT and BiCo improved during the CIRCUIT task in both HIs and CCSIs. On Day 3, HIs and CCSIs showed generalization of BiSAT, BiCo and transferred to the REACHING task. There was no significant between-group difference in progression. Four CCSIs and two HIs were categorized as "poor learners" according to BiSAT and/or BiCo. Increasing age correlated with reduced BiSAT but not BiCo progression. Over three days of training, HIs and CCSIs improved, retained, generalized and transferred a coordinated bimanual skill. There was no between-group difference, suggesting plastic compensation in CCSIs. Clinical trial NCT04642599 approved the 24th of November 2020.
Collapse
Affiliation(s)
- Estelle Gathy
- Stroke Unit, Motor Learning Lab, Neurology Department, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-La-Neuve, Belgium
- NEUR Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- COSY Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Ninon Cadiat
- Stroke Unit, Motor Learning Lab, Neurology Department, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
| | - Eloïse Gerardin
- Stroke Unit, Motor Learning Lab, Neurology Department, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-La-Neuve, Belgium
- NEUR Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Julien Lambert
- COSY Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Benoît Herman
- Louvain Bionics, UCLouvain, Louvain-La-Neuve, Belgium
- Institute of Mechanics, Materials and Civil Engineering (iMMC), UCLouvain, Louvain-La-Neuve, Belgium
| | - Mie Leeuwerck
- Department of Physical Medicine and Rehabilitation, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
| | - Benoît Bihin
- Scientific Support Unit (USS), CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
| | - Yves Vandermeeren
- Stroke Unit, Motor Learning Lab, Neurology Department, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium.
- Louvain Bionics, UCLouvain, Louvain-La-Neuve, Belgium.
- NEUR Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium.
| |
Collapse
|
5
|
Schoenfeld MJ, Thom J, Williams J, Stagg CJ, Zich C. Relationship between skill training and skill transfer through the example of bimanual motor learning. Eur J Neurosci 2024; 59:54-68. [PMID: 38081160 PMCID: PMC7615689 DOI: 10.1111/ejn.16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/07/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024]
Abstract
Skill training aims to improve the performance of the task at hand and aims to transfer the acquired skill to related tasks. Both skill training and skill transfer are part of our everyday lives, and essential for survival, and their importance is reflected in years of research. Despite these enormous efforts, however, the complex relationship between skill training and skill transfer is not yet portrayed completely. Building upon two theories, we probed this relationship through the example of bimanual learning with a large cross-sectional design (N = 450) using an online framework. We designed five training tasks which differed in the variance of the training material (schema theory) and three transfer tasks differing in their similarity to the training task (identical elements theory). Theoretically, the five training tasks and the three transfer tasks varied approximately linearly from each other. Empirical data, however, suggested merely the presence of three statistically different training tasks and two significantly different transfer tasks, indicating a nonlinear relationship. Against our expectation, Bayesian statistics suggested that the type of skill training was not related to the type of skill transfer. However, the amount of skill training was positively related to the amount of skill transfer. Together, we showed that motor learning studies can be conducted online. Further, our results shed light on the complex relationship between skill training and skill transfer. Understanding this relationship has wide-ranging practical implications for the general population, particularly for musicians, athletes and patients recovering from injury.
Collapse
Affiliation(s)
- Marleen J. Schoenfeld
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeuroscienceUniversity of OxfordUK
| | - Jude Thom
- Department of Experimental PsychologyUniversity of OxfordUK
| | | | - Charlotte J. Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeuroscienceUniversity of OxfordUK
| | - Catharina Zich
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeuroscienceUniversity of OxfordUK
- Department for Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
6
|
De Laet C, Herman B, Riga A, Bihin B, Regnier M, Leeuwerck M, Raymackers JM, Vandermeeren Y. Bimanual motor skill learning after stroke: Combining robotics and anodal tDCS over the undamaged hemisphere: An exploratory study. Front Neurol 2022; 13:882225. [PMID: 36061986 PMCID: PMC9433746 DOI: 10.3389/fneur.2022.882225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSince a stroke can impair bimanual activities, enhancing bimanual cooperation through motor skill learning may improve neurorehabilitation. Therefore, robotics and neuromodulation with transcranial direct current stimulation (tDCS) are promising approaches. To date, tDCS has failed to enhance bimanual motor control after stroke possibly because it was not integrating the hypothesis that the undamaged hemisphere becomes the major poststroke hub for bimanual control.ObjectiveWe tested the following hypotheses: (I) In patients with chronic hemiparetic stroke training on a robotic device, anodal tDCS applied over the primary motor cortex of the undamaged hemisphere enhances bimanual motor skill learning compared to sham tDCS. (II) The severity of impairment correlates with the effect of tDCS on bimanual motor skill learning. (III) Bimanual motor skill learning is less efficient in patients than in healthy individuals (HI).MethodsA total of 17 patients with chronic hemiparetic stroke and 7 healthy individuals learned a complex bimanual cooperation skill on the REAplan® neurorehabilitation robot. The bimanual speed/accuracy trade-off (biSAT), bimanual coordination (biCo), and bimanual force (biFOP) scores were computed for each performance. In patients, real/sham tDCS was applied in a crossover, randomized, double-blind approach.ResultsCompared to sham, real tDCS did not enhance bimanual motor skill learning, retention, or generalization in patients, and no correlation with impairment was noted. The healthy individuals performed better than patients on bimanual motor skill learning, but generalization was similar in both groups.ConclusionA short motor skill learning session with a robotic device resulted in the retention and generalization of a complex skill involving bimanual cooperation. The tDCS strategy that would best enhance bimanual motor skill learning after stroke remains unknown.Clinical trial registrationhttps://clinicaltrials.gov/ct2/show/NCT02308852, identifier: NCT02308852.
Collapse
Affiliation(s)
- Chloë De Laet
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Benoît Herman
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Materials and Civil Engineering (iMMC), Institute of Mechanics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Audrey Riga
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Clinical Division (NEUR), Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Benoît Bihin
- Scientific Support Unit, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Maxime Regnier
- Scientific Support Unit, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Maria Leeuwerck
- Department of Physical Medicine and Rehabilitation, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Jean-Marc Raymackers
- Department of Neurology and Neurosurgery, Clinique Saint-Pierre, Ottignies-Louvain-la-Neuve, Belgium
| | - Yves Vandermeeren
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Clinical Division (NEUR), Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- *Correspondence: Yves Vandermeeren
| |
Collapse
|
7
|
Riga A, Gathy E, Ghinet M, De Laet C, Bihin B, Regnier M, Leeuwerck M, De Coene B, Dricot L, Herman B, Edwards MG, Vandermeeren Y. Evidence of Motor Skill Learning in Acute Stroke Patients Without Lesions to the Thalamus and Internal Capsule. Stroke 2022; 53:2361-2368. [PMID: 35311345 PMCID: PMC9232242 DOI: 10.1161/strokeaha.121.035494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
It is currently unknown whether motor skill learning (MSkL) with the paretic upper limb is possible during the acute phase after stroke and whether lesion localization impacts MSkL. Here, we investigated MSkL in acute (1–7 days post) stroke patients compared with healthy individuals (HIs) and in relation to voxel-based lesion symptom mapping.
Methods:
Twenty patients with acute stroke and 35 HIs were trained over 3 consecutive days on a neurorehabilitation robot measuring speed, accuracy, and movement smoothness variables. Patients used their paretic upper limb and HI used their nondominant upper limb on an MSkL task involving a speed/accuracy trade-off. Generalization was evaluated on day 3. All patients underwent a 3-dimensional magnetic resonance imaging used for VSLM.
Results:
Most patients achieved MSkL demonstrated by day-to-day retention and generalization of the newly learned skill on day 3. When comparing raw speed/accuracy trade-off values, HI achieved larger MSkL than patients. However, relative speed/accuracy trade-off values showed no significant differences in MSkL between patients and HI on day 3. In patients, MSkL progression correlated with acute motor and cognitive impairments. The voxel-based lesion symptom mapping showed that acute vascular damage to the thalamus or the posterior limb of the internal capsule reduced MSkL.
Conclusions:
Despite worse motor performance for acute stroke patients compared with HI, most patients were able to achieve MSkL with their paretic upper limb. Damage to the thalamus and posterior limb of the internal capsule, however, reduced MSkL. These data show that MSkL could be implemented into neurorehabilitation during the acute phase of stroke, particularly for patients without lesions to the thalamus and posterior limb of the internal capsule.
Registration:
URL:
https://www.clinicaltrials.gov
; Unique identifier: NCT01519843.
Collapse
Affiliation(s)
- Audrey Riga
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
- NEUR Division, Institute of NeuroScience, UCLouvain, Brussels, Belgium (A.R., L.D., M.G.E., Y.V.)
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium. (A.R., B.H., M.G.E., Y.V.)
| | - Estelle Gathy
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
| | - Marisa Ghinet
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
| | - Chloë De Laet
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
| | - Benoît Bihin
- Scientific Support Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium. (B.B., M.R.)
| | - Maxime Regnier
- Scientific Support Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium. (B.B., M.R.)
| | - Maria Leeuwerck
- Department of Physical Medicine and Rehabilitation, CHU UCL Namur, UCLouvain, Yvoir, Belgium. (M.L.)
| | - Béatrice De Coene
- Department of Radiology (B.D.C.), CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Laurence Dricot
- NEUR Division, Institute of NeuroScience, UCLouvain, Brussels, Belgium (A.R., L.D., M.G.E., Y.V.)
| | - Benoît Herman
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium. (A.R., B.H., M.G.E., Y.V.)
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium. (B.H.)
| | - Martin G. Edwards
- NEUR Division, Institute of NeuroScience, UCLouvain, Brussels, Belgium (A.R., L.D., M.G.E., Y.V.)
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium. (A.R., B.H., M.G.E., Y.V.)
- Psychological Sciences Research Institute (M.G.E.), UCLouvain, Louvain-la-Neuve, Belgium
| | - Yves Vandermeeren
- Department of Neurology, Stroke Unit, CHU UCL Namur, UCLouvain, Yvoir, Belgium (A.R., E.G., M.G., C.D.L., Y.V.)
- NEUR Division, Institute of NeuroScience, UCLouvain, Brussels, Belgium (A.R., L.D., M.G.E., Y.V.)
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium. (A.R., B.H., M.G.E., Y.V.)
- Faculty of Medicine, Laboratory of Anatomy, Université de Namur, Belgium (Y.V.)
| |
Collapse
|
8
|
Gerardin E, Bontemps D, Babuin NT, Herman B, Denis A, Bihin B, Regnier M, Leeuwerck M, Deltombe T, Riga A, Vandermeeren Y. Bimanual motor skill learning with robotics in chronic stroke: comparison between minimally impaired and moderately impaired patients, and healthy individuals. J Neuroeng Rehabil 2022; 19:28. [PMID: 35300709 PMCID: PMC8928664 DOI: 10.1186/s12984-022-01009-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Most activities of daily life (ADL) require cooperative bimanual movements. A unilateral stroke may severely impair bimanual ADL. How patients with stroke (re)learn to coordinate their upper limbs (ULs) is largely unknown. The objectives are to determine whether patients with chronic supratentorial stroke could achieve bimanual motor skill learning (bim-MSkL) and to compare bim-MSkL between patients and healthy individuals (HIs). METHODS Twenty-four patients and ten HIs trained over 3 consecutive days on an asymmetrical bimanual coordination task (CIRCUIT) implemented as a serious game in the REAplan® robot. With a common cursor controlled by coordinated movements of the ULs through robotic handles, they performed as many laps as possible (speed constraint) on the CIRCUIT while keeping the cursor within the track (accuracy constraint). The primary outcome was a bimanual speed/accuracy trade-off (biSAT), we used a bimanual coordination factor (biCO) and bimanual forces (biFOP) for the secondary outcomes. Several clinical scales were used to evaluate motor and cognitive functions. RESULTS Overall, the patients showed improvements on biSAT and biCO. Based on biSAT progression, the HI achieved a larger bim-MSkL than the patients with mild to moderate impairment (Fugl-Meyer Assessment Upper Extremity (FMA-UE): 28-55, n = 15) but not significantly different from those with minimal motor impairment (FMA-UE: 66, n = 9). There was a significant positive correlation between biSAT evolution and the FMA-UE and Stroke Impact Scale. CONCLUSIONS Both HI and patients with chronic stroke training on a robotic device achieved bim-MSkL, although the more impaired patients were less efficient. Bim-MSkL with REAplan® may be interesting for neurorehabilitation after stroke. TRIAL REGISTRATION ClinicalTrial.gov identifier: NCT03974750. Registered 05 June 2019. https://clinicaltrials.gov/ct2/show/NCT03974750?cond=NCT03974750&draw=2&rank=1.
Collapse
Affiliation(s)
- Eloïse Gerardin
- Neurology Department, Stroke Unit, UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium.
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium.
- Institute of NeuroScience (IoNS), NEUR Division, UCLouvain, Brussels, Belgium.
| | - Damien Bontemps
- Department of Physical Medicine and Rehabilitation, UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium
- Faculty of Motor Sciences, UCLouvain, Louvain-La-Neuve, Belgium
| | - Nicolas-Thomas Babuin
- Department of Physical Medicine and Rehabilitation, UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium
- Faculty of Motor Sciences, UCLouvain, Louvain-La-Neuve, Belgium
| | - Benoît Herman
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Adrien Denis
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Benoît Bihin
- Scientific Support Unit (USS), UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium
| | - Maxime Regnier
- Scientific Support Unit (USS), UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium
| | - Maria Leeuwerck
- Department of Physical Medicine and Rehabilitation, UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium
| | - Thierry Deltombe
- Department of Physical Medicine and Rehabilitation, UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium
| | - Audrey Riga
- Neurology Department, Stroke Unit, UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of NeuroScience (IoNS), NEUR Division, UCLouvain, Brussels, Belgium
| | - Yves Vandermeeren
- Neurology Department, Stroke Unit, UCLouvain, CHU UCL Namur (Godinne), Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of NeuroScience (IoNS), NEUR Division, UCLouvain, Brussels, Belgium
| |
Collapse
|
9
|
Schoenfeld MJ, Grigoras IF, Stagg CJ, Zich C. Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task: A Behavioural and Transcranial Alternating Current Stimulation Study. Front Hum Neurosci 2021; 15:755748. [PMID: 34867245 PMCID: PMC8635148 DOI: 10.3389/fnhum.2021.755748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Many tasks require the skilled interaction of both hands, such as eating with knife and fork or keyboard typing. However, our understanding of the behavioural and neurophysiological mechanisms underpinning bimanual motor learning is still sparse. Here, we aimed to address this by first characterising learning-related changes of different levels of bimanual interaction and second investigating how beta tACS modulates these learning-related changes. To explore early bimanual motor learning, we designed a novel bimanual motor learning task. In the task, a force grip device held in each hand (controlling x- and y-axis separately) was used to move a cursor along a path of streets at different angles (0°, 22.5°, 45°, 67.5°, and 90°). Each street corresponded to specific force ratios between hands, which resulted in different levels of hand interaction, i.e., unimanual (Uni, i.e., 0°, 90°), bimanual with equal force (Bi eq , 45°), and bimanual with unequal force (Bi uneq 22.5°, 67.5°). In experiment 1, 40 healthy participants performed the task for 45 min with a minimum of 100 trials. We found that the novel task induced improvements in movement time and error, with no trade-off between movement time and error, and with distinct patterns for the three levels of bimanual interaction. In experiment 2, we performed a between-subjects, double-blind study in 54 healthy participants to explore the effect of phase synchrony between both sensorimotor cortices using tACS at the individual's beta peak frequency. The individual's beta peak frequency was quantified using electroencephalography. 20 min of 2 mA peak-to-peak amplitude tACS was applied during task performance (40 min). Participants either received in-phase (0° phase shift), out-of-phase (90° phase shift), or sham (3 s of stimulation) tACS. We replicated the behavioural results of experiment 1, however, beta tACS did not modulate motor learning. Overall, the novel bimanual motor task allows to characterise bimanual motor learning with different levels of bimanual interaction. This should pave the way for future neuroimaging studies to further investigate the underlying mechanism of bimanual motor learning.
Collapse
Affiliation(s)
- Marleen J. Schoenfeld
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ioana-Florentina Grigoras
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Charlotte J. Stagg
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Catharina Zich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
10
|
Doost MY, Orban de Xivry JJ, Herman B, Vanthournhout L, Riga A, Bihin B, Jamart J, Laloux P, Raymackers JM, Vandermeeren Y. Learning a Bimanual Cooperative Skill in Chronic Stroke Under Noninvasive Brain Stimulation: A Randomized Controlled Trial. Neurorehabil Neural Repair 2019; 33:486-498. [PMID: 31088342 DOI: 10.1177/1545968319847963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Transcranial direct current stimulation (tDCS) has been suggested to improve poststroke recovery. However, its effects on bimanual motor learning after stroke have not previously been explored. Objective. We investigated whether dual-tDCS of the primary motor cortex (M1), with cathodal and anodal tDCS applied over undamaged and damaged hemispheres, respectively, improves learning and retention of a new bimanual cooperative motor skill in stroke patients. Method. Twenty-one chronic hemiparetic patients were recruited for a randomized, double-blinded, cross-over, sham-controlled trial. While receiving real or sham dual-tDCS, they trained on a bimanual cooperative task called CIRCUIT. Changes in performance were quantified via bimanual speed/accuracy trade-off (Bi-SAT) and bimanual coordination factor (Bi-Co) before, during, and 0, 30, and 60 minutes after dual-tDCS, as well as one week later to measure retention. A generalization test then followed, where patients were asked to complete a new CIRCUIT layout. Results. The patients were able to learn and retain the bimanual cooperative skill. However, a general linear mixed model did not detect a significant difference in retention between the real and sham dual-tDCS conditions for either Bi-SAT or Bi-Co. Similarly, no difference in generalization was detected for Bi-SAT or Bi-Co. Conclusion. The chronic hemiparetic stroke patients learned and retained the complex bimanual cooperative task and generalized the newly acquired skills to other tasks, indicating that bimanual CIRCUIT training is promising as a neurorehabilitation approach. However, bimanual motor skill learning was not enhanced by dual-tDCS in these patients.
Collapse
Affiliation(s)
- Maral Yeganeh Doost
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Jean-Jacques Orban de Xivry
- 4 Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Belgium.,5 Leuven Brain Institute, KU Leuven, Belgium
| | - Benoît Herman
- 3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium.,6 Université catholique de Louvain (UCLouvain), Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Léna Vanthournhout
- 3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium.,6 Université catholique de Louvain (UCLouvain), Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Audrey Riga
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Benoît Bihin
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium
| | - Jacques Jamart
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium
| | - Patrice Laloux
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium
| | | | - Yves Vandermeeren
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| |
Collapse
|