1
|
Zhang M, Riecke L, Bonte M. Cortical tracking of language structures: Modality-dependent and independent responses. Clin Neurophysiol 2024; 166:56-65. [PMID: 39111244 DOI: 10.1016/j.clinph.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVES The mental parsing of linguistic hierarchy is crucial for language comprehension, and while there is growing interest in the cortical tracking of auditory speech, the neurophysiological substrates for tracking written language are still unclear. METHODS We recorded electroencephalographic (EEG) responses from participants exposed to auditory and visual streams of either random syllables or tri-syllabic real words. Using a frequency-tagging approach, we analyzed the neural representations of physically presented (i.e., syllables) and mentally constructed (i.e., words) linguistic units and compared them between the two sensory modalities. RESULTS We found that tracking syllables is partially modality dependent, with anterior and posterior scalp regions more involved in the tracking of spoken and written syllables, respectively. The cortical tracking of spoken and written words instead was found to involve a shared anterior region to a similar degree, suggesting a modality-independent process for word tracking. CONCLUSION Our study suggests that basic linguistic features are represented in a sensory modality-specific manner, while more abstract ones are modality-unspecific during the online processing of continuous language input. SIGNIFICANCE The current methodology may be utilized in future research to examine the development of reading skills, especially the deficiencies in fluent reading among those with dyslexia.
Collapse
Affiliation(s)
- Manli Zhang
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Lars Riecke
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Junker FB, Schlaffke L, Lange J, Schmidt-Wilcke T. The angular gyrus serves as an interface between the non-lexical reading network and the semantic system: evidence from dynamic causal modeling. Brain Struct Funct 2024; 229:561-575. [PMID: 36905417 PMCID: PMC10978681 DOI: 10.1007/s00429-023-02624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Understanding encoded language, such as written words, requires multiple cognitive processes that act in a parallel and interactive fashion. These processes and their interactions, however, are not fully understood. Various conceptual and methodical approaches including computational modeling and neuroimaging have been applied to better understand the neural underpinnings of these complex processes in the human brain. In this study, we tested different predictions of cortical interactions that derived from computational models for reading using dynamic causal modeling. Morse code was used as a model for non-lexical decoding followed by a lexical-decision during a functional magnetic resonance examination. Our results suggest that individual letters are first converted into phonemes within the left supramarginal gyrus, followed by a phoneme assembly to reconstruct word phonology, involving the left inferior frontal cortex. To allow the identification and comprehension of known words, the inferior frontal cortex then interacts with the semantic system via the left angular gyrus. As such, the left angular gyrus is likely to host phonological and semantic representations and serves as a bidirectional interface between the networks involved in language perception and word comprehension.
Collapse
Affiliation(s)
- Frederick Benjamin Junker
- Department of Neuropsychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Lara Schlaffke
- Department for Neurology, Professional Association Berufsgenossenschaft-University Hospital Bergmannsheil, Bürkle de La Camp-Platz 1, 44789, Bochum, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tobias Schmidt-Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Neurological Center Mainkofen, Mainkofen A 3, 94469, Deggendorf, Germany
| |
Collapse
|
3
|
Bonte M, Brem S. Unraveling individual differences in learning potential: A dynamic framework for the case of reading development. Dev Cogn Neurosci 2024; 66:101362. [PMID: 38447471 PMCID: PMC10925938 DOI: 10.1016/j.dcn.2024.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Children show an enormous capacity to learn during development, but with large individual differences in the time course and trajectory of learning and the achieved skill level. Recent progress in developmental sciences has shown the contribution of a multitude of factors including genetic variation, brain plasticity, socio-cultural context and learning experiences to individual development. These factors interact in a complex manner, producing children's idiosyncratic and heterogeneous learning paths. Despite an increasing recognition of these intricate dynamics, current research on the development of culturally acquired skills such as reading still has a typical focus on snapshots of children's performance at discrete points in time. Here we argue that this 'static' approach is often insufficient and limits advancements in the prediction and mechanistic understanding of individual differences in learning capacity. We present a dynamic framework which highlights the importance of capturing short-term trajectories during learning across multiple stages and processes as a proxy for long-term development on the example of reading. This framework will help explain relevant variability in children's learning paths and outcomes and fosters new perspectives and approaches to study how children develop and learn.
Collapse
Affiliation(s)
- Milene Bonte
- Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Pasqualotto A, Cochrane A, Bavelier D, Altarelli I. A novel task and methods to evaluate inter-individual variation in audio-visual associative learning. Cognition 2024; 242:105658. [PMID: 37952371 DOI: 10.1016/j.cognition.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Learning audio-visual associations is foundational to a number of real-world skills, such as reading acquisition or social communication. Characterizing individual differences in such learning has therefore been of interest to researchers in the field. Here, we present a novel audio-visual associative learning task designed to efficiently capture inter-individual differences in learning, with the added feature of using non-linguistic stimuli, so as to unconfound language and reading proficiency of the learner from their more domain-general learning capability. By fitting trial-by-trial performance in our novel learning task using simple-to-use statistical tools, we demonstrate the expected inter-individual variability in learning rate as well as high precision in its estimation. We further demonstrate that such measured learning rate is linked to working memory performance in Italian-speaking (N = 58) and French-speaking (N = 51) adults. Finally, we investigate the extent to which learning rate in our task, which measures cross-modal audio-visual associations while mitigating familiarity confounds, predicts reading ability across participants with different linguistic backgrounds. The present work thus introduces a novel non-linguistic audio-visual associative learning task that can be used across languages. In doing so, it brings a new tool to researchers in the various domains that rely on multi-sensory integration from reading to social cognition or socio-emotional learning.
Collapse
Affiliation(s)
- Angela Pasqualotto
- Faculty of Psychology and Education Sciences (FPSE), University of Geneva, Geneva, Switzerland; Campus Biotech, Geneva, Switzerland
| | - Aaron Cochrane
- Faculty of Psychology and Education Sciences (FPSE), University of Geneva, Geneva, Switzerland; Campus Biotech, Geneva, Switzerland
| | - Daphne Bavelier
- Faculty of Psychology and Education Sciences (FPSE), University of Geneva, Geneva, Switzerland; Campus Biotech, Geneva, Switzerland.
| | | |
Collapse
|
5
|
Church JA, Grigorenko EL, Fletcher JM. The Role of Neural and Genetic Processes in Learning to Read and Specific Reading Disabilities: Implications for Instruction. READING RESEARCH QUARTERLY 2023; 58:203-219. [PMID: 37456924 PMCID: PMC10348696 DOI: 10.1002/rrq.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/29/2021] [Indexed: 07/18/2023]
Abstract
To learn to read, the brain must repurpose neural systems for oral language and visual processing to mediate written language. We begin with a description of computational models for how alphabetic written language is processed. Next, we explain the roles of a dorsal sublexical system in the brain that relates print and speech, a ventral lexical system that develops the visual expertise for rapid orthographic processing at the word level, and the role of cognitive control networks that regulate attentional processes as children read. We then use studies of children, adult illiterates learning to read, and studies of poor readers involved in intervention, to demonstrate the plasticity of these neural networks in development and in relation to instruction. We provide a brief overview of the rapid increase in the field's understanding and technology for assessing genetic influence on reading. Family studies of twins have shown that reading skills are heritable, and molecular genetic studies have identified numerous regions of the genome that may harbor candidate genes for the heritability of reading. In selected families, reading impairment has been associated with major genetic effects, despite individual gene contributions across the broader population that appear to be small. Neural and genetic studies do not prescribe how children should be taught to read, but these studies have underscored the critical role of early intervention and ongoing support. These studies also have highlighted how structured instruction that facilitates access to the sublexical components of words is a critical part of training the brain to read.
Collapse
Affiliation(s)
| | - Elena L Grigorenko
- University of Houston, Texas, USA; Baylor College of Medicine, Houston, Texas, USA; and St. Petersburg State University, Russia
| | | |
Collapse
|
6
|
The effect of non-invasive vagus nerve stimulation on memory recall in reading: A pilot study. Behav Brain Res 2023; 438:114164. [PMID: 36265760 DOI: 10.1016/j.bbr.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/09/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Expert reading acquisition is marked by fluent, effortless decoding, and adequate comprehension skills and is required for modern daily life. In spite of its importance, many individuals struggle with reading comprehension even when decoding skills are adequate. Unfortunately, effective reading comprehension interventions are limited, especially for adults. A growing body of research suggests that non-invasive transcutaneous stimulation of the auricular vagus nerve (taVNS) may drive neural plasticity for low-level reading skills such as speech sound perception and letter-sound learning, but it is unknown whether taVNS can improve higher level skills as well. Thus, the current pilot study was designed to evaluate the effect of taVNS paired with passage reading on reading comprehension performance. Twenty-four typically developing young adults were recruited and screened for baseline reading and working memory skills. Participants received either sham or active taVNS while reading short passages out loud. Immediately following each passage, participants answered a series of test questions that required either direct recall of passage details or more complete comprehension of the passage content. While taVNS did not improve the mechanics of reading (e.g., reading rate or accuracy), there was a significant effect of active taVNS on test performance. This effect was driven by significant improvement on accuracy for memory questions while there was no effect of taVNS on comprehension question accuracy. These findings suggest that taVNS may be beneficial for enhancing memory, but its efficacy may be limited in higher cognitive domains.
Collapse
|
7
|
Mirahadi SS, Nitsche MA, Pahlavanzadeh B, Mohamadi R, Ashayeri H, Abolghasemi J. Reading and phonological awareness improvement accomplished by transcranial direct current stimulation combined with phonological awareness training: A randomized controlled trial. APPLIED NEUROPSYCHOLOGY. CHILD 2022; 12:137-149. [PMID: 35298314 DOI: 10.1080/21622965.2022.2051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phonological awareness (PA) training is a core intervention in dyslexia. Recently, transcranial direct current stimulation (tDCS) has been probed as a complementary intervention for increasing reading ability in dyslexia, but not for enhancing the efficacy of PA. The aim of the current study was thus to examine whether tDCS combined with a PA intervention improves reading, but also PA abilities as a proxy in children with dyslexia. A randomized, double-blind, sham-controlled clinical trial was performed to assess the effects of tDCS (applied bilaterally over the temporo-parietal junction with the anode placed over the left, and the cathode placed over the right hemisphere) combined with PA training on reading and PA abilities in dyslexic patients. Twenty-eight participants were randomly assigned to active (PA + anodal tDCS) or sham (PA + sham tDCS) groups. Each subject participated in 15 treatment sessions. PA and real/non-word reading were evaluated at baseline before the intervention, at the end of the fifth, tenth, and final intervention sessions, and then 6 weeks after intervention. In the active tDCS group, the mean scores of non-word reading and PA tests were significantly improved during, immediately, and 6 weeks after the treatment, as compared to the sham tDCS group. tDCS is thus a promising complementary intervention if combined with PA training to enhance PA and reading abilities in dyslexia for an extended period after treatment.
Collapse
Affiliation(s)
- Seyyedeh Samaneh Mirahadi
- Department of Speech and Language Pathology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Bagher Pahlavanzadeh
- Department of Public Health, Research Center for Environmental Contaminants, Abadan University of Medical Sciences, Abadan, Iran
| | - Reyhane Mohamadi
- Department of Speech and Language Pathology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hasan Ashayeri
- Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Jamile Abolghasemi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Romanovska L, Bonte M. How Learning to Read Changes the Listening Brain. Front Psychol 2021; 12:726882. [PMID: 34987442 PMCID: PMC8721231 DOI: 10.3389/fpsyg.2021.726882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023] Open
Abstract
Reading acquisition reorganizes existing brain networks for speech and visual processing to form novel audio-visual language representations. This requires substantial cortical plasticity that is reflected in changes in brain activation and functional as well as structural connectivity between brain areas. The extent to which a child's brain can accommodate these changes may underlie the high variability in reading outcome in both typical and dyslexic readers. In this review, we focus on reading-induced functional changes of the dorsal speech network in particular and discuss how its reciprocal interactions with the ventral reading network contributes to reading outcome. We discuss how the dynamic and intertwined development of both reading networks may be best captured by approaching reading from a skill learning perspective, using audio-visual learning paradigms and longitudinal designs to follow neuro-behavioral changes while children's reading skills unfold.
Collapse
Affiliation(s)
| | - Milene Bonte
- *Correspondence: Linda Romanovska, ; Milene Bonte,
| |
Collapse
|
9
|
Beyond Reading Modulation: Temporo-Parietal tDCS Alters Visuo-Spatial Attention and Motion Perception in Dyslexia. Brain Sci 2021; 11:brainsci11020263. [PMID: 33669651 PMCID: PMC7922381 DOI: 10.3390/brainsci11020263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/17/2023] Open
Abstract
Dyslexia is a neurodevelopmental disorder with an atypical activation of posterior left-hemisphere brain reading networks (i.e., temporo-occipital and temporo-parietal regions) and multiple neuropsychological deficits. Transcranial direct current stimulation (tDCS) is a tool for manipulating neural activity and, in turn, neurocognitive processes. While studies have demonstrated the significant effects of tDCS on reading, neurocognitive changes beyond reading modulation have been poorly investigated. The present study aimed at examining whether tDCS on temporo-parietal regions affected not only reading, but also phonological skills, visuo-spatial working memory, visuo-spatial attention, and motion perception in a polarity-dependent way. In a within-subjects design, ten children and adolescents with dyslexia performed reading and neuropsychological tasks after 20 min of exposure to Left Anodal/Right Cathodal (LA/RC) and Right Anodal/Left Cathodal (RA/LC) tDCS. LA/RC tDCS compared to RA/LC tDCS improved text accuracy, word recognition speed, motion perception, and modified attentional focusing in our group of children and adolescents with dyslexia. Changes in text reading accuracy and word recognition speed—after LA/RC tDCS compared to RA/LC—were related to changes in motion perception and in visuo-spatial working memory, respectively. Our findings demonstrated that reading and domain-general neurocognitive functions in a group of children and adolescents with dyslexia change following tDCS and that they are polarity-dependent.
Collapse
|
10
|
Cummine J, Villarena M, Onysyk T, Devlin JT. A Study of Null Effects for the Use of Transcranial Direct Current Stimulation (tDCS) in Adults With and Without Reading Impairment. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:434-451. [PMID: 36793290 PMCID: PMC9923690 DOI: 10.1162/nol_a_00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/19/2020] [Indexed: 05/09/2023]
Abstract
UNLABELLED There is evidence to support the hypothesis that the delivery of anodal transcranial direct current stimulation (tDCS) to the left temporoparietal junction can enhance performance on reading speed and reading accuracy (Costanzo et al., 2016b; Heth & Lavidor, 2015). Here, we explored whether we could demonstrate similar effects in adults with and without reading impairments. METHOD Adults with (N = 33) and without (N = 29) reading impairment were randomly assigned to anodal or sham stimulation conditions. All individuals underwent a battery of reading assessments pre and post stimulation. The stimulation session involved 15 min of anodal/sham stimulation over the left temporoparietal junction while concurrently completing a computerized nonword segmentation task known to activate the temporoparietal junction. RESULTS There were no conclusive findings that anodal stimulation impacted reading performance for skilled or impaired readers. CONCLUSIONS While tDCS may provide useful gains on reading performance in the paediatric population, much more work is needed to establish the parameters under which such findings would transfer to adult populations. The documentation, reporting, and interpreting of null effects of tDCS are immensely important to a field that is growing exponentially with much uncertainty.
Collapse
Affiliation(s)
| | - Miya Villarena
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Taylor Onysyk
- Communication Sciences and Disorders, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
11
|
Hämäläinen JA, Parviainen T, Hsu YF, Salmelin R. Dynamics of brain activation during learning of syllable-symbol paired associations. Neuropsychologia 2019; 129:93-103. [PMID: 30930303 DOI: 10.1016/j.neuropsychologia.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 11/15/2022]
Abstract
Initial stages of reading acquisition require the learning of letter and speech sound combinations. While the long-term effects of audio-visual learning are rather well studied, relatively little is known about the short-term learning effects at the brain level. Here we examined the cortical dynamics of short-term learning using magnetoencephalography (MEG) and electroencephalography (EEG) in two experiments that respectively addressed active and passive learning of the association between shown symbols and heard syllables. In experiment 1, learning was based on feedback provided after each trial. The learning of the audio-visual associations was contrasted with items for which the feedback was meaningless. In experiment 2, learning was based on statistical learning through passive exposure to audio-visual stimuli that were consistently presented with each other and contrasted with audio-visual stimuli that were randomly paired with each other. After 5-10 min of training and exposure, learning-related changes emerged in neural activation around 200 and 350 ms in the two experiments. The MEG results showed activity changes at 350 ms in caudal middle frontal cortex and posterior superior temporal sulcus, and at 500 ms in temporo-occipital cortex. Changes in brain activity coincided with a decrease in reaction times and an increase in accuracy scores. Changes in EEG activity were observed starting at the auditory P2 response followed by later changes after 300 ms. The results show that the short-term learning effects emerge rapidly (manifesting in later stages of audio-visual integration processes) and that these effects are modulated by selective attention processes.
Collapse
Affiliation(s)
- Jarmo A Hämäläinen
- Centre for Interdisciplinary Brain Research, Department of Psychology, P.O. Box 35, 40014, University of Jyväskylä, Finland.
| | - Tiina Parviainen
- Centre for Interdisciplinary Brain Research, Department of Psychology, P.O. Box 35, 40014, University of Jyväskylä, Finland
| | - Yi-Fang Hsu
- Department of Educational Psychology and Counseling, National Taiwan Normal University, 10610, Taipei, Taiwan; Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, 10610, Taipei, Taiwan
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, 00076, Aalto University, Finland; Aalto NeuroImaging, 00076, Aalto University, Finland
| |
Collapse
|