1
|
Pascual-Valdunciel A, Kurukuti NM, Montero-Pardo C, Barroso FO, Pons JL. Modulation of spinal circuits following phase-dependent electrical stimulation of afferent pathways. J Neural Eng 2023; 20. [PMID: 36603216 DOI: 10.1088/1741-2552/acb087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Objective.Peripheral electrical stimulation (PES) of afferent pathways is a tool commonly used to induce neural adaptations in some neural disorders such as pathological tremor or stroke. However, the neuromodulatory effects of stimulation interventions synchronized with physiological activity (closed-loop strategies) have been scarcely researched in the upper-limb. Here, the short-term spinal effects of a 20-minute stimulation protocol where afferent pathways were stimulated with a closed-loop strategy named selective and adaptive timely stimulation (SATS) were explored in 11 healthy subjects.Approach. SATS was applied to the radial nerve in-phase (INP) or out-of-phase (OOP) with respect to the muscle activity of the extensor carpi radialis (ECR). The neural adaptations at the spinal cord level were assessed for the flexor carpi radialis (FCR) by measuring disynaptic Group I inhibition, Ia presynaptic inhibition, Ib facilitation from the H-reflex and estimation of the neural drive before, immediately after, and 30 minutes after the intervention.Main results.SATS strategy delivered electrical stimulation synchronized with the real-time muscle activity measured, with an average delay of 17 ± 8 ms. SATS-INP induced increased disynaptic Group I inhibition (77 ± 23% of baseline conditioned FCR H-reflex), while SATS-OOP elicited the opposite effect (125 ± 46% of baseline conditioned FCR H-reflex). Some of the subjects maintained the changes after 30 minutes. No other significant changes were found for the rest of measurements.Significance.These results suggest that the short-term modulatory effects of phase-dependent PES occur at specific targeted spinal pathways for the wrist muscles in healthy individuals. Importantly, timely recruitment of afferent pathways synchronized with specific muscle activity is a fundamental principle that shall be considered when tailoring PES protocols to modulate specific neural circuits. (NCT number 04501133).
Collapse
Affiliation(s)
- Alejandro Pascual-Valdunciel
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of PM&R, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.,Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,E.T.S. Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nish Mohith Kurukuti
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of Biomedical Engineering and Mechanical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
| | - Cristina Montero-Pardo
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,Universidad Carlos III de Madrid, Madrid, Spain
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - José Luis Pons
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of PM&R, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.,Department of Biomedical Engineering and Mechanical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
2
|
Xu J, Lopez AJ, Hoque MM, Borich MR, Kesar TM. Temporal Profile of Descending Cortical Modulation of Spinal Excitability: Group and Individual-Specific Effects. Front Integr Neurosci 2022; 15:777741. [PMID: 35197831 PMCID: PMC8859157 DOI: 10.3389/fnint.2021.777741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Sensorimotor control is modulated through complex interactions between descending corticomotor pathways and ascending sensory inputs. Pairing sub-threshold transcranial magnetic stimulation (TMS) with peripheral nerve stimulation (PNS) modulates the Hoffmann’s reflex (H-reflex), providing a neurophysiologic probe into the influence of descending cortical drive on spinal segmental circuits. However, individual variability in the timing and magnitude of H-reflex modulation is poorly understood. Here, we varied the inter-stimulus interval (ISI) between TMS and PNS to systematically manipulate the relative timing of convergence of descending TMS-induced volleys with respect to ascending PNS-induced afferent volleys in the spinal cord to: (1) characterize effective connectivity between the primary motor cortex (M1) and spinal circuits, mediated by both direct, fastest-conducting, and indirect, slower-conducting descending pathways; and (2) compare the effect of individual-specific vs. standard ISIs. Unconditioned and TMS-conditioned H-reflexes (24 different ISIs ranging from −6 to 12 ms) were recorded from the soleus muscle in 10 able-bodied individuals. The magnitude of H-reflex modulation at individualized ISIs (earliest facilitation delay or EFD and individual-specific peak facilitation) was compared with standard ISIs. Our results revealed a significant effect of ISI on H-reflex modulation. ISIs eliciting earliest-onset facilitation (EFD 0 ms) ranged from −3 to −5 ms across individuals. No difference in the magnitude of facilitation was observed at EFD 0 ms vs. a standardized short-interval ISI of −1.5 ms. Peak facilitation occurred at longer ISIs, ranging from +3 to +11 ms. The magnitude of H-reflex facilitation derived using an individual-specific peak facilitation was significantly larger than facilitation observed at a standardized longer-interval ISI of +10 ms. Our results suggest that unique insights can be provided with individual-specific measures of top-down effective connectivity mediated by direct and/or fastest-conducting pathways (indicated by the magnitude of facilitation observed at EFD 0 ms) and other descending pathways that encompass relatively slower and/or indirect connections from M1 to spinal circuits (indicated by peak facilitation and facilitation at longer ISIs). By comprehensively characterizing the temporal profile and inter-individual variability of descending modulation of spinal reflexes, our findings provide methodological guidelines and normative reference values to inform future studies on neurophysiological correlates of the complex array of descending neural connections between M1 and spinal circuits.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Alejandro J. Lopez
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Maruf M. Hoque
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Trisha M. Kesar
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Trisha M. Kesar
| |
Collapse
|
3
|
Plantin J, Pennati GV, Roca P, Baron JC, Laurencikas E, Weber K, Godbolt AK, Borg J, Lindberg PG. Quantitative Assessment of Hand Spasticity After Stroke: Imaging Correlates and Impact on Motor Recovery. Front Neurol 2019; 10:836. [PMID: 31456734 PMCID: PMC6699580 DOI: 10.3389/fneur.2019.00836] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Objective: This longitudinal observational study investigated how neural stretch-resistance in wrist and finger flexors develops after stroke and relates to motor recovery, secondary complications, and lesion location. Methods: Sixty-one patients were assessed at 3 weeks (T1), three (T2), and 6 months (T3) after stroke using the NeuroFlexor method and clinical tests. Magnetic Resonance Imaging was used to calculate weighted corticospinal tract lesion load (wCST-LL) and to perform voxel-based lesion symptom mapping. Results: NeuroFlexor assessment demonstrated spasticity (neural component [NC] >3.4N normative cut-off) in 33% of patients at T1 and in 51% at T3. Four subgroups were identified: early Severe spasticity (n = 10), early Moderate spasticity (n = 10), Late developing spasticity (n = 17) and No spasticity (n = 24). All except the Severe spasticity group improved significantly in Fugl-Meyer Assessment (FMA-HAND) to T3. The Severe and Late spasticity groups did not improve in Box and Blocks Test. The Severe spasticity group showed a 25° reduction in passive range of movement and more frequent arm pain at T3. wCST-LL correlated positively with NC at T1 and T3, even after controlling for FMA-HAND and lesion volume. Voxel-based lesion symptom mapping showed that lesioned white matter below cortical hand knob correlated positively with NC. Conclusion: Severe hand spasticity early after stroke is negatively associated with hand motor recovery and positively associated with the development of secondary complications. Corticospinal tract damage predicts development of spasticity. Early quantitative hand spasticity measurement may have potential to predict motor recovery and could guide targeted rehabilitation interventions after stroke.
Collapse
Affiliation(s)
- Jeanette Plantin
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Gaia V Pennati
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Pauline Roca
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Paris, France.,Department of Neuroimaging, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Jean-Claude Baron
- Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Evaldas Laurencikas
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.,Division of Radiology, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Karin Weber
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Alison K Godbolt
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Jörgen Borg
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Påvel G Lindberg
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.,Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Paris, France
| |
Collapse
|
4
|
Aguiar SA, Choudhury S, Kumar H, Perez MA, Baker SN. Effect of central lesions on a spinal circuit facilitating human wrist flexors. Sci Rep 2018; 8:14821. [PMID: 30287827 PMCID: PMC6172264 DOI: 10.1038/s41598-018-33012-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
A putative spinal circuit with convergent inputs facilitating human wrist flexors has been recently described. This study investigated how central nervous system lesions may affect this pathway. We measured the flexor carpi radialis H-reflex conditioned with stimulation above motor threshold to the extensor carpi radialis at different intervals in fifteen patients with stroke and nine with spinal cord injury. Measurements after stroke revealed a prolonged facilitation of the H-reflex, which replaced the later suppression seen in healthy subjects at longer intervals (30-60 ms). Measurements in patients with incomplete spinal cord injury at cervical level revealed heterogeneous responses. Results from patients with stroke could represent either an excessive facilitation or a loss of inhibition, which may reflect the development of spasticity. Spinal cord injury results possibly reflect damage to the segmental interneuron pathways. We report a straightforward method to assess changes to spinal circuits controlling wrist flexors after central nervous system lesion.
Collapse
Affiliation(s)
- Stefane A Aguiar
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, United States
| | - Stuart N Baker
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|