1
|
Castejón J, Chen F, Yasoda-Mohan A, Ó Sé C, Vanneste S. Chronic pain - A maladaptive compensation to unbalanced hierarchical predictive processing. Neuroimage 2024; 297:120711. [PMID: 38942099 DOI: 10.1016/j.neuroimage.2024.120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
The ability to perceive pain presents an interesting evolutionary advantage to adapt to an ever-changing environment. However, in the case of chronic pain (CP), pain perception hinders the capacity of the system to adapt to changing sensory environments. Similar to other chronic perceptual disorders, CP is also proposed to be a maladaptive compensation to aberrant sensory predictive processing. The local-global oddball paradigm relies on learning hierarchical rules and processing environmental irregularities at a local and global level. Prediction errors (PE) between actual and predicted input typically trigger an update of the forward model to limit the probability of encountering future PEs. It has been hypothesised that CP hinders forward model updating, reflected in increased local deviance and decreased global deviance. In the present study, we used the local-global paradigm to examine how CP influences hierarchical learning relative to healthy controls. As hypothesised, we observed that deviance in the stimulus characteristics evoked heightened local deviance and decreased global deviance of the stimulus-driven PE. This is also accompanied by respective changes in theta phase locking that is correlated with the subjective pain perception. Changes in the global deviant in the stimulus-driven-PE could also be explained by dampened attention-related responses. Changing the context of the auditory stimulus did not however show a difference in the context-driven PE. These findings suggest that CP is accompanied by maladaptive forward model updating where the constant presence of pain perception disrupts local deviance in non-nociceptive domains. Furthermore, we hypothesise that the auditory-processing based biomarker identified here could be a marker of domain-general dysfunction that could be confirmed by future research.
Collapse
Affiliation(s)
- Jorge Castejón
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Senior MSK Physiotherapist CompassPhysio LTD, Ireland
| | - Feifan Chen
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Colum Ó Sé
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
2
|
Roy A, Girija VS, Kitzlerová E. The Role of Momentary Dissociation in the Sensory Cortex: A Neurophysiological Review and its Implications for Maladaptive Daydreaming. Med Sci Monit 2024; 30:e944209. [PMID: 38848281 PMCID: PMC11166090 DOI: 10.12659/msm.944209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024] Open
Abstract
Daydreaming, a form of spontaneous and self-generated mental process, may lead to the disintegration of attention from the immediate external environment. In extreme cases, patients may develop maladaptive daydreaming comorbid with dissociation. The examination of dissociative alterations frequently occurs within the framework of complex cognitive processes. While dissociation may be a neurological and psychological dysfunction of integration, transient dissociative occurrences, i.e., momentary dissociation may signify a dynamic interplay between attentional division and orientation within the sensory cortex. Furthermore, previous studies have recorded the interactivity of attention by stimuli onset with P3 event-related potentials and the active suppression of distractor positivity. In this context, during auditory and visual mismatch negativity, the sensory cortex may interact with attentional orientation. Additionally, distractor positivity during task-relevant stimuli may play a crucial role in predicting momentary dissociation since sensory cortices share cerebral correlates with attentional fluctuations during mental imagery. Thus, this theoretical review investigated the cerebral activities associated with attentional orientation and may be extended to mindfulness. By integrating these findings, we aim to provide a comprehensive understanding of dissociative states which may lead to a resolution for dissociative psychopathology.
Collapse
Affiliation(s)
- Anney Roy
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | | | - Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
3
|
Ghosh P, Talwar S, Banerjee A. Unsupervised Characterization of Prediction Error Markers in Unisensory and Multisensory Streams Reveal the Spatiotemporal Hierarchy of Cortical Information Processing. eNeuro 2024; 11:ENEURO.0251-23.2024. [PMID: 38702194 PMCID: PMC11069433 DOI: 10.1523/eneuro.0251-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/06/2024] Open
Abstract
Elicited upon violation of regularity in stimulus presentation, mismatch negativity (MMN) reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory error detection whereas P300 is associated with cognitive processes such as updating of the working memory. To date, there has been extensive research on the roles of MMN and P300 individually, because of their potential to be used as clinical markers of consciousness and attention, respectively. Here, we intend to explore with an unsupervised and rigorous source estimation approach, the underlying cortical generators of MMN and P300, in the context of prediction error propagation along the hierarchies of brain information processing in healthy human participants. The existing methods of characterizing the two ERPs involve only approximate estimations of their amplitudes and latencies based on specific sensors of interest. Our objective is twofold: first, we introduce a novel data-driven unsupervised approach to compute latencies and amplitude of ERP components accurately on an individual-subject basis and reconfirm earlier findings. Second, we demonstrate that in multisensory environments, MMN generators seem to reflect a significant overlap of "modality-specific" and "modality-independent" information processing while P300 generators mark a shift toward completely "modality-independent" processing. Advancing earlier understanding that multisensory contexts speed up early sensory processing, our study reveals that temporal facilitation extends to even the later components of prediction error processing, using EEG experiments. Such knowledge can be of value to clinical research for characterizing the key developmental stages of lifespan aging, schizophrenia, and depression.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Gurgaon 122052, India
| | - Siddharth Talwar
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Gurgaon 122052, India
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Gurgaon 122052, India
| |
Collapse
|
4
|
Li J, Zhong B, Li M, Sun Y, Fan W, Liu S. Effort expenditure modulates feedback evaluations involving self-other agreement: evidence from brain potentials and neural oscillations. Cereb Cortex 2024; 34:bhae095. [PMID: 38517174 DOI: 10.1093/cercor/bhae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
The influence of effort expenditure on the subjective value in feedback involving material reward has been the focus of previous research. However, little is known about the impact of effort expenditure on subjective value evaluations when feedback involves reward that is produced in the context of social interaction (e.g. self-other agreement). Moreover, how effort expenditure influences confidence (second-order subjective value) in feedback evaluations remains unclear. Using electroencephalography, this study aimed to address these questions. Event-related potentials showed that, after exerting high effort, participants exhibited increased reward positivity difference in response to self-other (dis)agreement feedback. After exerting low effort, participants reported high confidence, and the self-other disagreement feedback evoked a larger P3a. Time-frequency analysis showed that the high-effort task evoked increased frontal midline theta power. In the low (vs. high)-effort task, the frontal midline delta power for self-other disagreement feedback was enhanced. These findings suggest that, at the early feedback evaluation stage, after exerting high effort, individuals exhibit an increased sensitivity of subjective value evaluation in response to self-other agreement feedback. At the later feedback evaluation stage, after completing the low-effort task, the self-other disagreement feedback violates the individuals'high confidence and leads to a metacognitive mismatch.
Collapse
Affiliation(s)
- Jin Li
- Department of Psychology, Hunan Normal University, Changsha 410081, China
- Cognition and Human Behavior Key Laboratory of Hunan Province, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Bowei Zhong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Li
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yu Sun
- School of Psychology, Guizhou Normal University, Guizhou 550025, China
| | - Wei Fan
- Department of Psychology, Hunan Normal University, Changsha 410081, China
- Cognition and Human Behavior Key Laboratory of Hunan Province, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Shuangxi Liu
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410003, China
| |
Collapse
|
5
|
Kobayashi K, Shiba Y, Honda S, Nakajima S, Fujii S, Mimura M, Noda Y. Short-Term Effect of Auditory Stimulation on Neural Activities: A Scoping Review of Longitudinal Electroencephalography and Magnetoencephalography Studies. Brain Sci 2024; 14:131. [PMID: 38391706 PMCID: PMC10887208 DOI: 10.3390/brainsci14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Explored through EEG/MEG, auditory stimuli function as a suitable research probe to reveal various neural activities, including event-related potentials, brain oscillations and functional connectivity. Accumulating evidence in this field stems from studies investigating neuroplasticity induced by long-term auditory training, specifically cross-sectional studies comparing musicians and non-musicians as well as longitudinal studies with musicians. In contrast, studies that address the neural effects of short-term interventions whose duration lasts from minutes to hours are only beginning to be featured. Over the past decade, an increasing body of evidence has shown that short-term auditory interventions evoke rapid changes in neural activities, and oscillatory fluctuations can be observed even in the prestimulus period. In this scoping review, we divided the extracted neurophysiological studies into three groups to discuss neural activities with short-term auditory interventions: the pre-stimulus period, during stimulation, and a comparison of before and after stimulation. We show that oscillatory activities vary depending on the context of the stimuli and are greatly affected by the interplay of bottom-up and top-down modulational mechanisms, including attention. We conclude that the observed rapid changes in neural activitiesin the auditory cortex and the higher-order cognitive part of the brain are causally attributed to short-term auditory interventions.
Collapse
Affiliation(s)
- Kanon Kobayashi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasushi Shiba
- Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0816, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Foldal MD, Leske S, Blenkmann AO, Endestad T, Solbakk AK. Attentional modulation of beta-power aligns with the timing of behaviorally relevant rhythmic sounds. Cereb Cortex 2023; 33:1876-1894. [PMID: 35639957 PMCID: PMC9977362 DOI: 10.1093/cercor/bhac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
It is largely unknown how attention adapts to the timing of acoustic stimuli. To address this, we investigated how hemispheric lateralization of alpha (7-13 Hz) and beta (14-24 Hz) oscillations, reflecting voluntary allocation of auditory spatial attention, is influenced by tempo and predictability of sounds. We recorded electroencephalography while healthy adults listened to rhythmic sound streams with different tempos that were presented dichotically to separate ears, thus permitting manipulation of spatial-temporal attention. Participants responded to stimulus-onset-asynchrony (SOA) deviants (-90 ms) for given tones in the attended rhythm. Rhythm predictability was controlled via the probability of SOA deviants per block. First, the results revealed hemispheric lateralization of beta-power according to attention direction, reflected as ipsilateral enhancement and contralateral suppression, which was amplified in high- relative to low-predictability conditions. Second, fluctuations in the time-resolved beta-lateralization aligned more strongly with the attended than the unattended tempo. Finally, a trend-level association was found between the degree of beta-lateralization and improved ability to distinguish between SOA-deviants in the attended versus unattended ear. Differently from previous studies, we presented continuous rhythms in which task-relevant and irrelevant stimuli had different tempo, thereby demonstrating that temporal alignment of beta-lateralization with attended sounds reflects top-down attention to sound timing.
Collapse
Affiliation(s)
- Maja D Foldal
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Sabine Leske
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,Department of Musicology, University of Oslo, Sem Sælands vei 2, 0371 Oslo, Norway
| | - Alejandro O Blenkmann
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Tor Endestad
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,Department of Neuropsychology, Helgeland Hospital, Skjervengan 17, 8657 Mosjøen, Norway
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,Department of Neuropsychology, Helgeland Hospital, Skjervengan 17, 8657 Mosjøen, Norway.,Department of Neurosurgery, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
7
|
Implicit auditory perception of local and global irregularities in passive listening condition. Neuropsychologia 2021; 165:108129. [PMID: 34929262 DOI: 10.1016/j.neuropsychologia.2021.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022]
Abstract
The auditory system detects differences in sounds at an implicit level, but data on this difference might not be sufficient to make explicit discrimination. The biomarkers of implicit auditory memory of ambiguous stimuli could shed light on unconscious auditory processing and implicit auditory learning. Mismatch negativity (MMN) and P3a, components of event-related potentials (ERPs) reflecting stimuli discrimination without direct attention, were previously detected in response to the local (short-term) irregularity in the auditory sequence even in an unconscious state. At the same time, P3b was elicited only in case of direct attention in response to the global (long-term) irregularity. In this study, we applied the local-global auditory paradigm to obtain possible electrophysiological signatures of implicit detection of hardly distinguishable auditory stimuli. ERPs were recorded from 20 healthy volunteers during active discrimination of deviant sounds in the old-ball sequence and passive listening of the same sounds in the sequence with local-global irregularity. The discrimination task consisted of two blocks with different deviant sounds targeted to respond. The sound discrimination accuracy was at an average of 40%, implying the difficulty of explicit sound recognition. Comparing ERPs to standard and deviant sounds, we found posterior negativity in ERP around 450-600 ms in response to targeted deviant sounds. MMN was significant only in response to non-target deviants. In the passive local-global paradigm, we observed an anterior positivity (284-412 ms), compatible with P3a, in response to a violation of local regularity. Violation of global regularity elicited an anterior negative response (228-586 ms), resembling the N400 component of ERPs. Importantly, the other indexes of auditory discrimination, such as MMN and P3b, were insignificant in ERPs to both regularity violations. The observed P3a and N400 components of ERPs may reflect prediction error signals in the implicit perception of sound patterns even if behavioral recognition was poor.
Collapse
|
8
|
Cannon J. Expectancy-based rhythmic entrainment as continuous Bayesian inference. PLoS Comput Biol 2021; 17:e1009025. [PMID: 34106918 PMCID: PMC8216548 DOI: 10.1371/journal.pcbi.1009025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/21/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
When presented with complex rhythmic auditory stimuli, humans are able to track underlying temporal structure (e.g., a "beat"), both covertly and with their movements. This capacity goes far beyond that of a simple entrained oscillator, drawing on contextual and enculturated timing expectations and adjusting rapidly to perturbations in event timing, phase, and tempo. Previous modeling work has described how entrainment to rhythms may be shaped by event timing expectations, but sheds little light on any underlying computational principles that could unify the phenomenon of expectation-based entrainment with other brain processes. Inspired by the predictive processing framework, we propose that the problem of rhythm tracking is naturally characterized as a problem of continuously estimating an underlying phase and tempo based on precise event times and their correspondence to timing expectations. We present two inference problems formalizing this insight: PIPPET (Phase Inference from Point Process Event Timing) and PATIPPET (Phase and Tempo Inference). Variational solutions to these inference problems resemble previous "Dynamic Attending" models of perceptual entrainment, but introduce new terms representing the dynamics of uncertainty and the influence of expectations in the absence of sensory events. These terms allow us to model multiple characteristics of covert and motor human rhythm tracking not addressed by other models, including sensitivity of error corrections to inter-event interval and perceived tempo changes induced by event omissions. We show that positing these novel influences in human entrainment yields a range of testable behavioral predictions. Guided by recent neurophysiological observations, we attempt to align the phase inference framework with a specific brain implementation. We also explore the potential of this normative framework to guide the interpretation of experimental data and serve as building blocks for even richer predictive processing and active inference models of timing.
Collapse
Affiliation(s)
- Jonathan Cannon
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
A Neurophysiological Study of Musical Pitch Identification in Mandarin-Speaking Cochlear Implant Users. Neural Plast 2020; 2020:4576729. [PMID: 32774355 PMCID: PMC7396015 DOI: 10.1155/2020/4576729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Music perception in cochlear implant (CI) users is far from satisfactory, not only because of the technological limitations of current CI devices but also due to the neurophysiological alterations that generally accompany deafness. Early behavioral studies revealed that similar mechanisms underlie musical and lexical pitch perception in CI-based electric hearing. Although neurophysiological studies of the musical pitch perception of English-speaking CI users are actively ongoing, little such research has been conducted with Mandarin-speaking CI users; as Mandarin is a tonal language, these individuals require pitch information to understand speech. The aim of this work was to study the neurophysiological mechanisms accounting for the musical pitch identification abilities of Mandarin-speaking CI users and normal-hearing (NH) listeners. Behavioral and mismatch negativity (MMN) data were analyzed to examine musical pitch processing performance. Moreover, neurophysiological results from CI users with good and bad pitch discrimination performance (according to the just-noticeable differences (JND) and pitch-direction discrimination (PDD) tasks) were compared to identify cortical responses associated with musical pitch perception differences. The MMN experiment was conducted using a passive oddball paradigm, with musical tone C4 (262 Hz) presented as the standard and tones D4 (294 Hz), E4 (330 Hz), G#4 (415 Hz), and C5 (523 Hz) presented as deviants. CI users demonstrated worse musical pitch discrimination ability than did NH listeners, as reflected by larger JND and PDD thresholds for pitch identification, and significantly increased latencies and reduced amplitudes in MMN responses. Good CI performers had better MMN results than did bad performers. Consistent with findings for English-speaking CI users, the results of this work suggest that MMN is a viable marker of cortical pitch perception in Mandarin-speaking CI users.
Collapse
|