1
|
Schielen SJC, Pilmeyer J, Aldenkamp AP, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:318. [PMID: 39095368 PMCID: PMC11297045 DOI: 10.1038/s41398-024-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
While diagnosing autism spectrum disorder (ASD) based on an objective test is desired, the current diagnostic practice involves observation-based criteria. This study is a systematic review and meta-analysis of studies that aim to diagnose ASD using magnetic resonance imaging (MRI). The main objective is to describe the state of the art of diagnosing ASD using MRI in terms of performance metrics and interpretation. Furthermore, subgroups, including different MRI modalities and statistical heterogeneity, are analyzed. Studies that dichotomously diagnose individuals with ASD and healthy controls by analyses progressing from magnetic resonance imaging obtained in a resting state were systematically selected by two independent reviewers. Studies were sought on Web of Science and PubMed, which were last accessed on February 24, 2023. The included studies were assessed on quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate random-effects model was used for syntheses. One hundred and thirty-four studies were included comprising 159 eligible experiments. Despite the overlap in the studied samples, an estimated 4982 unique participants consisting of 2439 individuals with ASD and 2543 healthy controls were included. The pooled summary estimates of diagnostic performance are 76.0% sensitivity (95% CI 74.1-77.8), 75.7% specificity (95% CI 74.0-77.4), and an area under curve of 0.823, but uncertainty in the study assessments limits confidence. The main limitations are heterogeneity and uncertainty about the generalization of diagnostic performance. Therefore, comparisons between subgroups were considered inappropriate. Despite the current limitations, methods progressing from MRI approach the diagnostic performance needed for clinical practice. The state of the art has obstacles but shows potential for future clinical application.
Collapse
Affiliation(s)
- Sjir J C Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Albert P Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
2
|
Melillo RJ, Leisman G, Machado C, Carmeli E. Identification and reduction of retained primitive reflexes by sensory stimulation in autism spectrum disorder: effects on qEEG networks and cognitive functions. BMJ Case Rep 2023; 16:e255285. [PMID: 38154865 PMCID: PMC10759118 DOI: 10.1136/bcr-2023-255285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 12/30/2023] Open
Abstract
Several authors have reported finding retained primitive reflexes (RPRs) in individuals with autism spectrum disorders (ASD). This case report describes the reduction of RPRs and changes in cognitive function after transcutaneous electrical nerve stimulation (TENS) of muscle. Three individuals were examined in a study at the Institute for Neurology and Neurosurgery in Havana, Cuba. Two child neurologists, not involved in the study, conducted clinical examinations on each participant and diagnosed each with ASD based on DSM-V criteria and the Autism Diagnostic Interview-Revised (an autism evaluation tool). Each child with ASD possessed a triad of impairments in three domains: social interaction, communication, and repetitive behaviour. Individuals were evaluated by quantitative electroencephalographic measures and tested by standardised cognitive function tests before and after 12 weeks of intervention. These interventions were associated with reduced ASD symptoms in the three domains, significant changes in qEEG network connectivity and significantly improved performance on standardised cognitive tests.
Collapse
Affiliation(s)
- Robert John Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa Faculty of Social Welfare and Health Sciences, Haifa, Israel
| | - Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa Faculty of Social Welfare and Health Sciences, Haifa, Israel
- Institute for Neurology and Neurosurgery, Universidad de Ciencias Medicas de La Habana, La Habana, Cuba
| | - Calixto Machado
- Clinical Neurophysiology, Instituto de Neurologia y Neurocirugia, La Habana, Cuba
| | - Eli Carmeli
- Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Yang J, Hu M, Hu Y, Zhang Z, Zhong J. Diagnosis of Autism Spectrum Disorder (ASD) Using Recursive Feature Elimination-Graph Neural Network (RFE-GNN) and Phenotypic Feature Extractor (PFE). SENSORS (BASEL, SWITZERLAND) 2023; 23:9647. [PMID: 38139493 PMCID: PMC10747878 DOI: 10.3390/s23249647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/24/2023]
Abstract
Autism spectrum disorder (ASD) poses as a multifaceted neurodevelopmental condition, significantly impacting children's social, behavioral, and communicative capacities. Despite extensive research, the precise etiological origins of ASD remain elusive, with observable connections to brain activity. In this study, we propose a novel framework for ASD detection, extracting the characteristics of functional magnetic resonance imaging (fMRI) data and phenotypic data, respectively. Specifically, we employ recursive feature elimination (RFE) for feature selection of fMRI data and subsequently apply graph neural networks (GNN) to extract informative features from the chosen data. Moreover, we devise a phenotypic feature extractor (PFE) to extract phenotypic features effectively. We then, synergistically fuse the features and validate them on the ABIDE dataset, achieving 78.7% and 80.6% accuracy, respectively, thereby showcasing competitive performance compared to state-of-the-art methods. The proposed framework provides a promising direction for the development of effective diagnostic tools for ASD.
Collapse
Affiliation(s)
| | | | | | | | - Jiancheng Zhong
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China; (J.Y.); (M.H.); (Y.H.); (Z.Z.)
| |
Collapse
|
4
|
Qureshi MS, Qureshi MB, Asghar J, Alam F, Aljarbouh A. Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:4853800. [PMID: 37469788 PMCID: PMC10352530 DOI: 10.1155/2023/4853800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 07/21/2023]
Abstract
Autism spectrum disorder is a severe, life-prolonged neurodevelopmental disease typified by disabilities that are chronic or limited in the development of socio-communication skills, thinking abilities, activities, and behavior. In children aged two to three years, the symptoms of autism are more evident and easier to recognize. The major part of the existing literature on autism spectrum disorder is covered by a prediction system based on traditional machine learning algorithms such as support vector machine, random forest, multiple layer perceptron, naive Bayes, convolution neural network, and deep neural network. The proposed models are validated by using performance measurement parameters such as accuracy, precision, and recall. In this research, autism spectrum disorder prediction has been investigated and compared using common parameters such as application type, simulation method, comparison methodology, and input data. The key purpose of this study is to give a centralized framework to use for researchers working on autism spectrum disorder prediction. The best results were obtained by using the random forest algorithm as it performs better than other traditional machine learning algorithms. The achieved accuracy is 89.23%. The workflow representations of the investigated frameworks assist readers in comprehending the fundamental workings and architectures of these frameworks.
Collapse
Affiliation(s)
- Muhammad Shuaib Qureshi
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| | | | - Junaid Asghar
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, KPK, Pakistan
| | - Fatima Alam
- Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad 44000, Pakistan
| | - Ayman Aljarbouh
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| |
Collapse
|
5
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Helmy E, Elnakib A, ElNakieb Y, Khudri M, Abdelrahim M, Yousaf J, Ghazal M, Contractor S, Barnes GN, El-Baz A. Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey. Biomedicines 2023; 11:1858. [PMID: 37509498 PMCID: PMC10376963 DOI: 10.3390/biomedicines11071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a wide range of diseases characterized by difficulties with social skills, repetitive activities, speech, and nonverbal communication. The Centers for Disease Control (CDC) estimates that 1 in 44 American children currently suffer from ASD. The current gold standard for ASD diagnosis is based on behavior observational tests by clinicians, which suffer from being subjective and time-consuming and afford only late detection (a child must have a mental age of at least two to apply for an observation report). Alternatively, brain imaging-more specifically, magnetic resonance imaging (MRI)-has proven its ability to assist in fast, objective, and early ASD diagnosis and detection. With the recent advances in artificial intelligence (AI) and machine learning (ML) techniques, sufficient tools have been developed for both automated ASD diagnosis and early detection. More recently, the development of deep learning (DL), a young subfield of AI based on artificial neural networks (ANNs), has successfully enabled the processing of brain MRI data with improved ASD diagnostic abilities. This survey focuses on the role of AI in autism diagnostics and detection based on two basic MRI modalities: diffusion tensor imaging (DTI) and functional MRI (fMRI). In addition, the survey outlines the basic findings of DTI and fMRI in autism. Furthermore, recent techniques for ASD detection using DTI and fMRI are summarized and discussed. Finally, emerging tendencies are described. The results of this study show how useful AI is for early, subjective ASD detection and diagnosis. More AI solutions that have the potential to be used in healthcare settings will be introduced in the future.
Collapse
Affiliation(s)
- Eman Helmy
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Elgomheryia Street, Mansoura 3512, Egypt;
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Yaser ElNakieb
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Mohamed Khudri
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Mostafa Abdelrahim
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Jawad Yousaf
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (J.Y.); (M.G.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (J.Y.); (M.G.)
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | - Gregory Neal Barnes
- Department of Neurology, Pediatric Research Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| |
Collapse
|
7
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Talesh Jafadideh A, Mohammadzadeh Asl B. Structural filtering of functional data offered discriminative features for autism spectrum disorder. PLoS One 2022; 17:e0277989. [PMID: 36472989 PMCID: PMC9725140 DOI: 10.1371/journal.pone.0277989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
This study attempted to answer the question, "Can filtering the functional data through the frequency bands of the structural graph provide data with valuable features which are not valuable in unfiltered data"?. The valuable features discriminate between autism spectrum disorder (ASD) and typically control (TC) groups. The resting-state fMRI data was passed through the structural graph's low, middle, and high-frequency band (LFB, MFB, and HFB) filters to answer the posed question. The structural graph was computed using the diffusion tensor imaging data. Then, the global metrics of functional graphs and metrics of functional triadic interactions were computed for filtered and unfiltered rfMRI data. Compared to TCs, ASDs had significantly higher clustering coefficients in the MFB, higher efficiencies and strengths in the MFB and HFB, and lower small-world propensity in the HFB. These results show over-connectivity, more global integration, and decreased local specialization in ASDs compared to TCs. Triadic analysis showed that the numbers of unbalanced triads were significantly lower for ASDs in the MFB. This finding may indicate the reason for restricted and repetitive behavior in ASDs. Also, in the MFB and HFB, the numbers of balanced triads and the energies of triadic interactions were significantly higher and lower for ASDs, respectively. These findings may reflect the disruption of the optimum balance between functional integration and specialization. There was no significant difference between ASDs and TCs when using the unfiltered data. All of these results demonstrated that significant differences between ASDs and TCs existed in the MFB and HFB of the structural graph when analyzing the global metrics of the functional graph and triadic interaction metrics. Also, these results demonstrated that frequency bands of the structural graph could offer significant findings which were not found in the unfiltered data. In conclusion, the results demonstrated the promising perspective of using structural graph frequency bands for attaining discriminative features and new knowledge, especially in the case of ASD.
Collapse
|
9
|
Talesh Jafadideh A, Mohammadzadeh Asl B. Topological analysis of brain dynamics in autism based on graph and persistent homology. Comput Biol Med 2022; 150:106202. [PMID: 37859293 DOI: 10.1016/j.compbiomed.2022.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder with a rapidly growing prevalence. In recent years, the dynamic functional connectivity (DFC) technique has been used to reveal the transient connectivity behavior of ASDs' brains by clustering connectivity matrices in different states. However, the states of DFC have not been yet studied from a topological point of view. In this paper, this study was performed using global metrics of the graph and persistent homology (PH) and resting-state functional magnetic resonance imaging (fMRI) data. The PH has been recently developed in topological data analysis and deals with persistent structures of data. The structural connectivity (SC) and static FC (SFC) were also studied to know which one of the SC, SFC, and DFC could provide more discriminative topological features when comparing ASDs with typical controls (TCs). Significant discriminative features were only found in states of DFC. Moreover, the best classification performance was offered by persistent homology-based metrics and in two out of four states. In these two states, some networks of ASDs compared to TCs were more segregated and isolated (showing the disruption of network integration in ASDs). The results of this study demonstrated that topological analysis of DFC states could offer discriminative features which were not discriminative in SFC and SC. Also, PH metrics can provide a promising perspective for studying ASD and finding candidate biomarkers.
Collapse
|
10
|
Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci 2022; 15:999605. [PMID: 36267703 PMCID: PMC9577321 DOI: 10.3389/fnmol.2022.999605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Ghassemi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Delaram Sadeghi
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Abdulhamit Subasi
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Juan M. Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
11
|
Uncovering hidden resting state dynamics: A new perspective on auditory verbal hallucinations. Neuroimage 2022; 255:119188. [PMID: 35398281 DOI: 10.1016/j.neuroimage.2022.119188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/24/2022] Open
Abstract
In the absence of sensory stimulation, the brain transits between distinct functional networks. Network dynamics such as transition patterns and the time the brain stays in each network link to cognition and behavior and are subject to much investigation. Auditory verbal hallucinations (AVH), the temporally fluctuating unprovoked experience of hearing voices, are associated with aberrant resting state network activity. However, we lack a clear understanding of how different networks contribute to aberrant activity over time. An accurate characterization of latent network dynamics and their relation to neurocognitive changes necessitates methods that capture the sub-second temporal fluctuations of the networks' functional connectivity signatures. Here, we critically evaluate the assumptions and sensitivity of several approaches commonly used to assess temporal dynamics of brain connectivity states in M/EEG and fMRI research, highlighting methodological constraints and their clinical relevance to AVH. Identifying altered brain connectivity states linked to AVH can facilitate the detection of predictive disease markers and ultimately be valuable for generating individual risk profiles, differential diagnosis, targeted intervention, and treatment strategies.
Collapse
|
12
|
Reproducible neuroimaging features for diagnosis of autism spectrum disorder with machine learning. Sci Rep 2022; 12:3057. [PMID: 35197468 PMCID: PMC8866395 DOI: 10.1038/s41598-022-06459-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD) is the fourth most common neurodevelopmental disorder, with a prevalence of 1 in 160 children. Accurate diagnosis relies on experts, but such individuals are scarce. This has led to increasing interest in the development of machine learning (ML) models that can integrate neuroimaging features from functional and structural MRI (fMRI and sMRI) to help reveal central nervous system alterations characteristic of ASD. We optimized and compared the performance of 12 of the most popular and powerful ML models. Each was separately trained using 15 different combinations of fMRI and sMRI features and optimized with an unbiased model search. Deep learning models predicted ASD with the highest diagnostic accuracy and generalized well to other MRI datasets. Our model achieves state-of-the-art 80% area under the ROC curve (AUROC) in diagnosis on test data from the IMPAC dataset; and 86% and 79% AUROC on the external ABIDE I and ABIDE II datasets (with further improvement to 93% and 90% after supervised domain adaptation). The highest performing models identified reproducible putative biomarkers for accurate ASD diagnosis in accord with known ASD markers as well as novel cerebellar biomarkers. Such reproducibility lends credence to their tremendous potential for defining and using a set of truly generalizable ASD biomarkers that will advance scientific understanding of neuronal changes in ASD.
Collapse
|
13
|
Epalle TM, Song Y, Liu Z, Lu H. Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Lu H, Liu S, Wei H, Chen C, Geng X. Deep multi-kernel auto-encoder network for clustering brain functional connectivity data. Neural Netw 2021; 135:148-157. [PMID: 33388506 DOI: 10.1016/j.neunet.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/28/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
In this study, we propose a deep-learning network model called the deep multi-kernel auto-encoder clustering network (DMACN) for clustering functional connectivity data for brain diseases. This model is an end-to-end clustering algorithm that can learn potentially advanced features and cluster disease categories. Unlike other auto-encoders, DMACN has an added self-expression layer and standard back-propagation is used to learn the features that are beneficial for clustering brain functional connectivity data. In the self-expression layer, the kernel matrix is constructed to extract effective features and a new loss function is proposed to constrain the clustering portion, which enables the training of a deep neural learning network that tends to cluster. To test the performance of the proposed algorithm, we applied the end-to-end deep unsupervised clustering algorithm to brain connectivity data. We then conducted experiments based on four public brain functional connectivity data sets and our own functional connectivity data set. The DMACN algorithm yielded good results in various evaluations compared with the existing clustering algorithm for brain functional connectivity data, the deep auto-encoder clustering algorithm, and several other relevant clustering algorithms. The deep-learning-based clustering algorithm has great potential for use in the unsupervised recognition of brain diseases.
Collapse
Affiliation(s)
- Hu Lu
- School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Saixiong Liu
- School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Wei
- School of Computer Science, Laboratory of Cognitive and Model Algorithm, Fudan University, Shanghai 200433, China
| | - Chao Chen
- School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Geng
- School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Chen N, Shi J, Li Y, Ji S, Zou Y, Yang L, Yao Z, Hu B. Decreased dynamism of overlapping brain sub-networks in Major Depressive Disorder. J Psychiatr Res 2021; 133:197-204. [PMID: 33360426 DOI: 10.1016/j.jpsychires.2020.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022]
Abstract
Major Depressive Disorder (MDD) is increasingly recognized as a common brain disorder with aberrant brain networks. Alterations in dynamic functional brain networks have been widely reported in MDD. However, previous studies mainly focused on detecting non-overlapping sub-networks/communities, neglecting the possibility that one brain region may belong to multiple sub-networks/communities. In the present work, we utilized tensor decomposition method to detect overlapping communities and study the dynamism of overlapping sub-networks through 58 patients with MDD and 63 age- and sex-matched healthy controls (HC). The strength vectors of communities were calculated and two-sample t-test was performed to investigate the statistical significance of the differences in dynamism of MDD and HC groups. We found that communities detected in two groups were pairwise region-matching but overlapped brain regions were almost totally different. We considered two region-matching communities in the two groups as a sub-network. Compared to HCs, MDD patients showed significantly decreased dynamism in five sub-networks which could be functionally mapped to Visual Network (VN), Default Mode Network (DMN), Cognitive Control Network (CCN), Bilateral Limbic Network (BLN) and Auditory Network (AN). The results showed that MDD might only have a marginal effect on the holistic detection of communities and the changes of overlapped brain regions in MDD patients might be put down to the alteration of hubs. Further statistical analysis on nine sub-networks showed decreased dynamism of five sub-networks in MDD patients, which might help us achieve a better understanding of mechanism in MDD.
Collapse
Affiliation(s)
- Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Jie Shi
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Shanling Ji
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Ying Zou
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China.
| |
Collapse
|
16
|
Agastinose Ronicko JF, Thomas J, Thangavel P, Koneru V, Langs G, Dauwels J. Diagnostic classification of autism using resting-state fMRI data improves with full correlation functional brain connectivity compared to partial correlation. J Neurosci Methods 2020; 345:108884. [PMID: 32730918 DOI: 10.1016/j.jneumeth.2020.108884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disability with altered connectivity in brain networks. NEW METHOD In this study, brain connections in Resting-state functional Magnetic Resonance Imaging (Rs-fMRI) of ASD and Typical Developing (TD) are analyzed by partial and full correlation methods such as Gaussian Graphical Least Absolute Shrinkage and Selection Operator (GLASSO), Max-Det Matrix Completion (MDMC), and Pearson Correlation Co-Efficient (PCCE). We investigated Functional Connectivity (FC) of ASD and TD brain from 238 functionally defined regions of interest. Furthermore, we constructed a series of feature sets by applying conditional random forests and conditional permutation importance. We built classifier models by Random Forest (RF), Oblique RF (ORF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN) for each feature set. FC features are ranked based on p-value and we analyzed the top 20 FC features. RESULTS We achieved a single-trial test accuracy of 72.5 %, though MDMC-SVM and PCCE-CNN pipelines. Further, PCCE-CNN pipeline gives better average test accuracy (70.31 %) and area under the curve (0.73) compared to other pipelines. We found that top-20 PCCE based FC features are from networks such as Dorsal Attention (DA), Cingulo-Opercular Task Control (COTC), somatosensory motor hand and subcortical. In addition, among top 20 PCCE features, many FC links are found between COTC and DA (4 connections) which helped to discriminate the ASD and TD. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The generalized classifier models built in our study for highly heterogeneous participants perform better than previous studies with similar data sets and diagnostic groups.
Collapse
Affiliation(s)
- Jac Fredo Agastinose Ronicko
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| | - John Thomas
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| | - Prasanth Thangavel
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| | - Vineetha Koneru
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
| | - Justin Dauwels
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
| |
Collapse
|
17
|
Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020; 4:041503. [PMID: 33094213 PMCID: PMC7556883 DOI: 10.1063/5.0011697] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for analyzing complex medical data and extracting meaningful relationships in datasets, for several clinical aims. Specifically, in the brain care domain, several innovative approaches have achieved remarkable results and open new perspectives in terms of diagnosis, planning, and outcome prediction. In this work, we present an overview of different artificial intelligent techniques used in the brain care domain, along with a review of important clinical applications. A systematic and careful literature search in major databases such as Pubmed, Scopus, and Web of Science was carried out using "artificial intelligence" and "brain" as main keywords. Further references were integrated by cross-referencing from key articles. 155 studies out of 2696 were identified, which actually made use of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance, and postoperative assessment). Artificial neural networks have risen to prominent positions among the most widely used analytical tools. Classic machine learning approaches such as support vector machine and random forest are still widely used. Task-specific algorithms are designed for solving specific problems. Brain images are one of the most used data types. AI has the possibility to improve clinicians' decision-making ability in neuroscience applications. However, major issues still need to be addressed for a better practical use of AI in the brain. To this aim, it is important to both gather comprehensive data and build explainable AI algorithms.
Collapse
Affiliation(s)
- Alice Segato
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Francesco Calimeri
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|