1
|
Zoefel B, Kösem A. Neural tracking of continuous acoustics: properties, speech-specificity and open questions. Eur J Neurosci 2024; 59:394-414. [PMID: 38151889 DOI: 10.1111/ejn.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Human speech is a particularly relevant acoustic stimulus for our species, due to its role of information transmission during communication. Speech is inherently a dynamic signal, and a recent line of research focused on neural activity following the temporal structure of speech. We review findings that characterise neural dynamics in the processing of continuous acoustics and that allow us to compare these dynamics with temporal aspects in human speech. We highlight properties and constraints that both neural and speech dynamics have, suggesting that auditory neural systems are optimised to process human speech. We then discuss the speech-specificity of neural dynamics and their potential mechanistic origins and summarise open questions in the field.
Collapse
Affiliation(s)
- Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Toulouse, France
- Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, Bron, France
| |
Collapse
|
2
|
Chota S, VanRullen R, Gulbinaite R. Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System. J Neurosci 2023; 43:3107-3119. [PMID: 36931709 PMCID: PMC10146486 DOI: 10.1523/jneurosci.1758-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 03/19/2023] Open
Abstract
Both passive tactile stimulation and motor actions result in dynamic changes in beta band (15-30 Hz Hz) oscillations over somatosensory cortex. Similar to alpha band (8-12 Hz) power decrease in the visual system, beta band power also decreases following stimulation of the somatosensory system. This relative suppression of α and β oscillations is generally interpreted as an increase in cortical excitability. Here, next to traditional single-pulse stimuli, we used a random intensity continuous right index finger tactile stimulation (white noise), which enabled us to uncover an impulse response function of the somatosensory system. Contrary to previous findings, we demonstrate a burst-like initial increase rather than decrease of beta activity following white noise stimulation (human participants, N = 18, 8 female). These β bursts, on average, lasted for 3 cycles, and their frequency was correlated with resonant frequency of somatosensory cortex, as measured by a multifrequency steady-state somatosensory evoked potential paradigm. Furthermore, beta band bursts shared spectro-temporal characteristics with evoked and resting-state β oscillations. Together, our findings not only reveal a novel oscillatory signature of somatosensory processing that mimics the previously reported visual impulse response functions, but also point to a common oscillatory generator underlying spontaneous β bursts in the absence of tactile stimulation and phase-locked β bursts following stimulation, the frequency of which is determined by the resonance properties of the somatosensory system.SIGNIFICANCE STATEMENT The investigation of the transient nature of oscillations has gained great popularity in recent years. The findings of bursting activity, rather than sustained oscillations in the beta band, have provided important insights into its role in movement planning, working memory, inhibition, and reactivation of neural ensembles. In this study, we show that also in response to tactile stimulation the somatosensory system responds with ∼3 cycle oscillatory beta band bursts, whose spectro-temporal characteristics are shared with evoked and resting-state beta band oscillatory signatures of the somatosensory system. As similar bursts have been observed in the visual domain, these oscillatory signatures might reflect an important supramodal mechanism in sensory processing.
Collapse
Affiliation(s)
- Samson Chota
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, 31052, France
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, 3584 CS, The Netherlands
| | - Rufin VanRullen
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, 31052, France
| | - Rasa Gulbinaite
- Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| |
Collapse
|
3
|
Köhler MHA, Weisz N. Cochlear Theta Activity Oscillates in Phase Opposition during Interaural Attention. J Cogn Neurosci 2023; 35:588-602. [PMID: 36626349 DOI: 10.1162/jocn_a_01959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It is widely established that sensory perception is a rhythmic process as opposed to a continuous one. In the context of auditory perception, this effect is only established on a cortical and behavioral level. Yet, the unique architecture of the auditory sensory system allows its primary sensory cortex to modulate the processes of its sensory receptors at the cochlear level. Previously, we could demonstrate the existence of a genuine cochlear theta (∼6-Hz) rhythm that is modulated in amplitude by intermodal selective attention. As the study's paradigm was not suited to assess attentional effects on the oscillatory phase of cochlear activity, the question of whether attention can also affect the temporal organization of the cochlea's ongoing activity remained open. The present study utilizes an interaural attention paradigm to investigate ongoing otoacoustic activity during a stimulus-free cue-target interval and an omission period of the auditory target in humans. We were able to replicate the existence of the cochlear theta rhythm. Importantly, we found significant phase opposition between the two ears and attention conditions of anticipatory as well as cochlear oscillatory activity during target presentation. Yet, the amplitude was unaffected by interaural attention. These results are the first to demonstrate that intermodal and interaural attention deploy different aspects of excitation and inhibition at the first level of auditory processing. Whereas intermodal attention modulates the level of cochlear activity, interaural attention modulates the timing.
Collapse
Affiliation(s)
| | - Nathan Weisz
- University of Salzburg.,Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
4
|
Plöchl M, Fiebelkorn I, Kastner S, Obleser J. Attentional sampling of visual and auditory objects is captured by theta-modulated neural activity. Eur J Neurosci 2021; 55:3067-3082. [PMID: 34729843 DOI: 10.1111/ejn.15514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/19/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
Recent evidence suggests that visual attention alternately samples two behaviourally relevant objects at approximately 4 Hz, rhythmically shifting between the objects. Whether similar attentional rhythms exist in other sensory modalities, however, is not yet clear. We therefore adapted and extended an established paradigm to investigate visual and potential auditory attentional rhythms, as well as possible interactions, on both a behavioural (detection performance, N = 33) and a neural level (EEG, N = 18). The results during unimodal attention demonstrate that both visual- and auditory-target detection fluctuate at frequencies of approximately 4-8 Hz, confirming that attentional rhythms are not specific to visual processing. The EEG recordings provided evidence of oscillatory activity that underlies these behavioural effects. At right and left occipital EEG electrodes, we detected counter-phasic theta-band activity (4-8 Hz), mirroring behavioural evidence of alternating sampling between the objects presented right and left of central fixation, respectively. Similarly, alpha-band activity as a signature of relatively suppressed sensory encoding showed a theta-rhythmic, counter-phasic change in power. Moreover, these theta-rhythmic changes in alpha power were predictive of behavioural performance in both sensory modalities. Overall, the present findings provide a new perspective on the multimodal rhythmicity of attention.
Collapse
Affiliation(s)
- Michael Plöchl
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Ian Fiebelkorn
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA.,Department of Psychology, Princeton University, Princeton, New Jersey, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA.,Department of Psychology, Princeton University, Princeton, New Jersey, USA
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Kienitz R, Schmid MC, Dugué L. Rhythmic sampling revisited: Experimental paradigms and neural mechanisms. Eur J Neurosci 2021; 55:3010-3024. [PMID: 34643973 DOI: 10.1111/ejn.15489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
Sampling of information is thought to be an important aspect of explorative behaviour. Evidence for it has been gained in behavioural assessments of a variety of overt and covert cognitive domains, including sensation, attention, memory, eye movements and dexterity. A common aspect across many findings is that sampling tends to exhibit a rhythmicity at low frequencies (theta, 4-8 Hz; alpha, 9-12 Hz). Neurophysiological investigations in a wide range of species, including rodents, non-human primates and humans have demonstrated the presence of sampling related neural oscillations in a number of brain areas ranging from early sensory cortex, hippocampus to high-level cognitive areas. However, to assess whether rhythmic sampling represents a general aspect of exploratory behaviour one must critically evaluate the task parameters, and their potential link with neural oscillations. Here we focus on sampling during attentive vision to present an overview on the experimental conditions that are used to investigate rhythmic sampling and associated oscillatory brain activity in this domain. This review aims to (1) provide guidelines to efficiently quantify behavioural rhythms, (2) compare results from human and non-human primate studies and (3) argue that the underlying neural mechanisms of sampling can co-occur in both sensory and high-level areas.
Collapse
Affiliation(s)
- Ricardo Kienitz
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt am Main, Germany.,Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Michael C Schmid
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.,Department of Movement and Neuroscience, Faculty of Natural Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laura Dugué
- Université de Paris, INCC UMR 8002, CNRS, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
Delta/Theta band EEG activity shapes the rhythmic perceptual sampling of auditory scenes. Sci Rep 2021; 11:2370. [PMID: 33504860 PMCID: PMC7840678 DOI: 10.1038/s41598-021-82008-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 11/08/2022] Open
Abstract
Many studies speak in favor of a rhythmic mode of listening, by which the encoding of acoustic information is structured by rhythmic neural processes at the time scale of about 1 to 4 Hz. Indeed, psychophysical data suggest that humans sample acoustic information in extended soundscapes not uniformly, but weigh the evidence at different moments for their perceptual decision at the time scale of about 2 Hz. We here test the critical prediction that such rhythmic perceptual sampling is directly related to the state of ongoing brain activity prior to the stimulus. Human participants judged the direction of frequency sweeps in 1.2 s long soundscapes while their EEG was recorded. We computed the perceptual weights attributed to different epochs within these soundscapes contingent on the phase or power of pre-stimulus EEG activity. This revealed a direct link between 4 Hz EEG phase and power prior to the stimulus and the phase of the rhythmic component of these perceptual weights. Hence, the temporal pattern by which the acoustic information is sampled over time for behavior is directly related to pre-stimulus brain activity in the delta/theta band. These results close a gap in the mechanistic picture linking ongoing delta band activity with their role in shaping the segmentation and perceptual influence of subsequent acoustic information.
Collapse
|
7
|
Friston KJ, Parr T, Yufik Y, Sajid N, Price CJ, Holmes E. Generative models, linguistic communication and active inference. Neurosci Biobehav Rev 2020; 118:42-64. [PMID: 32687883 PMCID: PMC7758713 DOI: 10.1016/j.neubiorev.2020.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 11/24/2022]
Abstract
This paper presents a biologically plausible generative model and inference scheme that is capable of simulating communication between synthetic subjects who talk to each other. Building on active inference formulations of dyadic interactions, we simulate linguistic exchange to explore generative models that support dialogues. These models employ high-order interactions among abstract (discrete) states in deep (hierarchical) models. The sequential nature of language processing mandates generative models with a particular factorial structure-necessary to accommodate the rich combinatorics of language. We illustrate linguistic communication by simulating a synthetic subject who can play the 'Twenty Questions' game. In this game, synthetic subjects take the role of the questioner or answerer, using the same generative model. This simulation setup is used to illustrate some key architectural points and demonstrate that many behavioural and neurophysiological correlates of linguistic communication emerge under variational (marginal) message passing, given the right kind of generative model. For example, we show that theta-gamma coupling is an emergent property of belief updating, when listening to another.
Collapse
Affiliation(s)
- Karl J Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK.
| | - Thomas Parr
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK.
| | - Yan Yufik
- Virtual Structures Research, Inc., 12204 Saint James Rd, Potomac, MD 20854, USA.
| | - Noor Sajid
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK.
| | - Catherine J Price
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK.
| | - Emma Holmes
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|
8
|
de Kerangal M, Vickers D, Chait M. The effect of healthy aging on change detection and sensitivity to predictable structure in crowded acoustic scenes. Hear Res 2020; 399:108074. [PMID: 33041093 DOI: 10.1016/j.heares.2020.108074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023]
Abstract
The auditory system plays a critical role in supporting our ability to detect abrupt changes in our surroundings. Here we study how this capacity is affected in the course of healthy ageing. Artifical acoustic 'scenes', populated by multiple concurrent streams of pure tones ('sources') were used to capture the challenges of listening in complex acoustic environments. Two scene conditions were included: REG scenes consisted of sources characterized by a regular temporal structure. Matched RAND scenes contained sources which were temporally random. Changes, manifested as the abrupt disappearance of one of the sources, were introduced to a subset of the trials and participants ('young' group N = 41, age 20-38 years; 'older' group N = 41, age 60-82 years) were instructed to monitor the scenes for these events. Previous work demonstrated that young listeners exhibit better change detection performance in REG scenes, reflecting sensitivity to temporal structure. Here we sought to determine: (1) Whether 'baseline' change detection ability (i.e. in RAND scenes) is affected by age. (2) Whether aging affects listeners' sensitivity to temporal regularity. (3) How change detection capacity relates to listeners' hearing and cognitive profile (a battery of tests that capture hearing and cognitive abilities hypothesized to be affected by aging). The results demonstrated that healthy aging is associated with reduced sensitivity to abrupt scene changes in RAND scenes but that performance does not correlate with age or standard audiological measures such as pure tone audiometry or speech in noise performance. Remarkably older listeners' change detection performance improved substantially (up to the level exhibited by young listeners) in REG relative to RAND scenes. This suggests that the ability to extract and track the regularity associated with scene sources, even in crowded acoustic environments, is relatively preserved in older listeners.
Collapse
Affiliation(s)
- Mathilde de Kerangal
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1 X 8EE, UK
| | - Deborah Vickers
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1 X 8EE, UK; Cambridge Hearing Group, Clinical Neurosciences Department, University of Cambridge, UK
| | - Maria Chait
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1 X 8EE, UK.
| |
Collapse
|
9
|
Wöstmann M, Lui TKY, Friese KH, Kreitewolf J, Naujokat M, Obleser J. The vulnerability of working memory to distraction is rhythmic. Neuropsychologia 2020; 146:107505. [PMID: 32485200 DOI: 10.1016/j.neuropsychologia.2020.107505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022]
Abstract
Recent research posits that the cognitive system samples target stimuli in a rhythmic fashion, characterized by target detection fluctuating at frequencies of ~3-8 Hz. Besides prioritized encoding of targets, a key cognitive function is the protection of working memory from distractor intrusion. Here, we test to which degree the vulnerability of working memory to distraction is rhythmic. In an Irrelevant-Speech Task, N = 23 human participants had to retain the serial order of nine numbers in working memory while being distracted by task-irrelevant speech with variable temporal onsets. The magnitude of the distractor-evoked N1 component in the event-related potential as well as behavioural recall accuracy, both measures of memory distraction, were periodically modulated by distractor onset time in approximately 2-4 cycles per second (Hz). Critically, an underlying 2.5-Hz rhythm explained variation in both measures of distraction such that stronger phasic distractor encoding mediated lower phasic memory recall accuracy. In a behavioural follow-up experiment, we tested whether these results would replicate in a task design without rhythmic presentation of target items. Participants (N = 6 with on average >2500 trials, each) retained two line-figures in memory while being distracted by acoustic noise of varying onset across trials. In agreement with the main experiment, the temporal onset of the distractor periodically modulated memory performance. These results suggest that during working memory retention, the human cognitive system implements distractor suppression in a temporally dynamic fashion, reflected in ~400-ms long cycles of high versus low distractibility.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany.
| | | | | | - Jens Kreitewolf
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Malte Naujokat
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
10
|
Zoefel B, Davis MH, Valente G, Riecke L. How to test for phasic modulation of neural and behavioural responses. Neuroimage 2019; 202:116175. [PMID: 31499178 PMCID: PMC6773602 DOI: 10.1016/j.neuroimage.2019.116175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
Research on whether perception or other processes depend on the phase of neural oscillations is rapidly gaining popularity. However, it is unknown which methods are optimally suited to evaluate the hypothesized phase effect. Using a simulation approach, we here test the ability of different methods to detect such an effect on dichotomous (e.g., "hit" vs "miss") and continuous (e.g., scalp potentials) response variables. We manipulated parameters that characterise the phase effect or define the experimental approach to test for this effect. For each parameter combination and response variable, we identified an optimal method. We found that methods regressing single-trial responses on circular (sine and cosine) predictors perform best for all of the simulated parameters, regardless of the nature of the response variable (dichotomous or continuous). In sum, our study lays a foundation for optimized experimental designs and analyses in future studies investigating the role of phase for neural and behavioural responses. We provide MATLAB code for the statistical methods tested.
Collapse
Affiliation(s)
- Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229, EV Maastricht, the Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229, EV Maastricht, the Netherlands
| |
Collapse
|
11
|
Herbst SK, Obleser J. Implicit temporal predictability enhances pitch discrimination sensitivity and biases the phase of delta oscillations in auditory cortex. Neuroimage 2019; 203:116198. [PMID: 31539590 DOI: 10.1016/j.neuroimage.2019.116198] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022] Open
Abstract
Can human listeners use implicit temporal contingencies in auditory input to form temporal predictions, and if so, how are these predictions represented endogenously? To assess this question, we implicitly manipulated temporal predictability in an auditory pitch discrimination task: unbeknownst to participants, the pitch of the standard tone could either be deterministically predictive of the temporal onset of the target tone, or convey no predictive information. Predictive and non-predictive conditions were presented interleaved in one stream, and separated by variable inter-stimulus intervals such that there was no dominant stimulus rhythm throughout. Even though participants were unaware of the implicit temporal contingencies, pitch discrimination sensitivity (the slope of the psychometric function) increased when the onset of the target tone was predictable in time (N = 49, 28 female, 21 male). Concurrently recorded EEG data (N = 24) revealed that standard tones that conveyed temporal predictions evoked a more negative N1 component than non-predictive standards. We observed no significant differences in oscillatory power or phase coherence between conditions during the foreperiod. Importantly, the phase angle of delta oscillations (1-3 Hz) in auditory areas in the post-standard and pre-target time windows predicted behavioral pitch discrimination sensitivity. This suggests that temporal predictions are encoded in delta oscillatory phase during the foreperiod interval. In sum, we show that auditory perception benefits from implicit temporal contingencies, and provide evidence for a role of slow neural oscillations in the endogenous representation of temporal predictions, in absence of exogenously driven entrainment to rhythmic input.
Collapse
Affiliation(s)
- Sophie K Herbst
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23552, Lübeck, Germany; NeuroSpin, CEA, DRF/Joliot; INSERM Cognitive Neuroimaging Unit; Université Paris-Sud, Université Paris-Saclay; Bât 145Gif s/ Yvette, 91190 France.
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23552, Lübeck, Germany
| |
Collapse
|