1
|
Politi K, Weiss PL, Givony K, Zion Golumbic E. Utility of Electroencephalograms for Enhancing Clinical Care and Rehabilitation of Children with Acquired Brain Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1466. [PMID: 39595733 PMCID: PMC11593451 DOI: 10.3390/ijerph21111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
The objective of this literature review was to present evidence from recent studies and applications focused on employing electroencephalogram (EEG) monitoring and methodological approaches during the rehabilitation of children with acquired brain injuries and their related effects. We describe acquired brain injury (ABI) as one of the most common reasons for cognitive and motor disabilities in children that significantly impact their safety, independence, and overall quality of life. These disabilities manifest as dysfunctions in cognition, gait, balance, upper-limb coordination, and hand dexterity. Rehabilitation treatment aims to restore and optimize these impaired functions to help children regain autonomy and enhance their quality of life. Recent advancements in monitoring technologies such as EEG measurements are increasingly playing a role in clinical diagnosis and management. A significant advantage of incorporating EEG technology in pediatric rehabilitation is its ability to provide continuous and objective quantitative monitoring of a child's neurological status. This allows for the real-time assessment of improvement or deterioration in brain function, including, but not limited to, a significant impact on motor function. EEG monitoring enables healthcare providers to tailor and adjust interventions-both pharmacological and rehabilitative-based on the child's current neurological status.
Collapse
Affiliation(s)
- Keren Politi
- ALYN Hospital, Jerusalem 91090, Israel
- Helmsley Pediatric & Adolescent Rehabilitation Research Center, ALYN Hospital, Jerusalem 91090, Israel; (P.L.W.); (K.G.)
| | - Patrice L. Weiss
- Helmsley Pediatric & Adolescent Rehabilitation Research Center, ALYN Hospital, Jerusalem 91090, Israel; (P.L.W.); (K.G.)
- Department of Occupational Therapy, University of Haifa, Haifa 3498838, Israel
| | - Kfir Givony
- Helmsley Pediatric & Adolescent Rehabilitation Research Center, ALYN Hospital, Jerusalem 91090, Israel; (P.L.W.); (K.G.)
- The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Elana Zion Golumbic
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan University, Ramat Gan 5290002, Israel;
| |
Collapse
|
2
|
Xu Y, Jie L, Jian W, Yi W, Yin H, Peng Y. Improved motor imagery training for subject's self-modulation in EEG-based brain-computer interface. Front Hum Neurosci 2024; 18:1447662. [PMID: 39253067 PMCID: PMC11381377 DOI: 10.3389/fnhum.2024.1447662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
For the electroencephalogram- (EEG-) based motor imagery (MI) brain-computer interface (BCI) system, more attention has been paid to the advanced machine learning algorithms rather than the effective MI training protocols over past two decades. However, it is crucial to assist the subjects in modulating their active brains to fulfill the endogenous MI tasks during the calibration process, which will facilitate signal processing using various machine learning algorithms. Therefore, we propose a trial-feedback paradigm to improve MI training and introduce a non-feedback paradigm for comparison. Each paradigm corresponds to one session. Two paradigms are applied to the calibration runs of corresponding sessions. And their effectiveness is verified in the subsequent testing runs of respective sessions. Different from the non-feedback paradigm, the trial-feedback paradigm presents a topographic map and its qualitative evaluation in real time after each MI training trial, so the subjects can timely realize whether the current trial successfully induces the event-related desynchronization/event-related synchronization (ERD/ERS) phenomenon, and then they can adjust their brain rhythm in the next MI trial. Moreover, after each calibration run of the trial-feedback session, a feature distribution is visualized and quantified to show the subjects' abilities to distinguish different MI tasks and promote their self-modulation in the next calibration run. Additionally, if the subjects feel distracted during the training processes of the non-feedback and trial-feedback sessions, they can execute the blinking movement which will be captured by the electrooculogram (EOG) signals, and the corresponding MI training trial will be abandoned. Ten healthy participants sequentially performed the non-feedback and trial-feedback sessions on the different days. The experiment results showed that the trial-feedback session had better spatial filter visualization, more beneficiaries, higher average off-line and on-line classification accuracies than the non-feedback session, suggesting the trial-feedback paradigm's usefulness in subject's self-modulation and good ability to perform MI tasks.
Collapse
Affiliation(s)
- Yilu Xu
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Lilin Jie
- School of Measuring and Optical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Wenjuan Jian
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Wenlong Yi
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Hua Yin
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Yingqiong Peng
- School of Software, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
邵 谢, 张 艺, 张 栋, 门 延, 王 子, 陈 晓, 谢 平. [Virtual reality-brain computer interface hand function enhancement rehabilitation system incorporating multi-sensory stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:656-663. [PMID: 39218590 PMCID: PMC11366477 DOI: 10.7507/1001-5515.202312055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Stroke is an acute cerebrovascular disease in which sudden interruption of blood supply to the brain or rupture of cerebral blood vessels cause damage to brain cells and consequently impair the patient's motor and cognitive abilities. A novel rehabilitation training model integrating brain-computer interface (BCI) and virtual reality (VR) not only promotes the functional activation of brain networks, but also provides immersive and interesting contextual feedback for patients. In this paper, we designed a hand rehabilitation training system integrating multi-sensory stimulation feedback, BCI and VR, which guides patients' motor imaginations through the tasks of the virtual scene, acquires patients' motor intentions, and then carries out human-computer interactions under the virtual scene. At the same time, haptic feedback is incorporated to further increase the patients' proprioceptive sensations, so as to realize the hand function rehabilitation training based on the multi-sensory stimulation feedback of vision, hearing, and haptic senses. In this study, we compared and analyzed the differences in power spectral density of different frequency bands within the EEG signal data before and after the incorporation of haptic feedback, and found that the motor brain area was significantly activated after the incorporation of haptic feedback, and the power spectral density of the motor brain area was significantly increased in the high gamma frequency band. The results of this study indicate that the rehabilitation training of patients with the VR-BCI hand function enhancement rehabilitation system incorporating multi-sensory stimulation can accelerate the two-way facilitation of sensory and motor conduction pathways, thus accelerating the rehabilitation process.
Collapse
Affiliation(s)
- 谢宁 邵
- 燕山大学 电气工程学院(河北秦皇岛 066000)College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066000, P. R. China
- 河北省智能康复及神经调控重点实验室(河北秦皇岛 066000)Key Lab of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, Hebei 066000, P. R. China
| | - 艺滢 张
- 燕山大学 电气工程学院(河北秦皇岛 066000)College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066000, P. R. China
| | - 栋 张
- 燕山大学 电气工程学院(河北秦皇岛 066000)College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066000, P. R. China
- 河北省智能康复及神经调控重点实验室(河北秦皇岛 066000)Key Lab of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, Hebei 066000, P. R. China
| | - 延帝 门
- 燕山大学 电气工程学院(河北秦皇岛 066000)College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066000, P. R. China
- 河北省智能康复及神经调控重点实验室(河北秦皇岛 066000)Key Lab of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, Hebei 066000, P. R. China
| | - 子龙 王
- 燕山大学 电气工程学院(河北秦皇岛 066000)College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066000, P. R. China
| | - 晓玲 陈
- 燕山大学 电气工程学院(河北秦皇岛 066000)College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066000, P. R. China
- 河北省智能康复及神经调控重点实验室(河北秦皇岛 066000)Key Lab of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, Hebei 066000, P. R. China
| | - 平 谢
- 燕山大学 电气工程学院(河北秦皇岛 066000)College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066000, P. R. China
- 河北省智能康复及神经调控重点实验室(河北秦皇岛 066000)Key Lab of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, Hebei 066000, P. R. China
| |
Collapse
|
4
|
Zorzi C, Tabbaa L, Covaci A, Sirlantzis K, Marcelli G. Train vs. Play: Evaluating the Effects of Gamified and Non-Gamified Wheelchair Skills Training Using Virtual Reality. Bioengineering (Basel) 2023; 10:1269. [PMID: 38002393 PMCID: PMC10669445 DOI: 10.3390/bioengineering10111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
This study compares the influence of a gamified and a non-gamified virtual reality (VR) environment on wheelchair skills training. In specific, the study explores the integration of gamification elements and their influence on wheelchair driving performance in VR-based training. Twenty-two non-disabled participants volunteered for the study, of whom eleven undertook the gamified VR training, and eleven engaged in the non-gamified VR training. To measure the efficacy of the VR-based wheelchair skills training, we captured the heart rate (HR), number of joystick movements, completion time, and number of collisions. In addition, an adapted version of the Wheelchair Skills Training Program Questionnaire (WSTP-Q), the Igroup Presence Questionnaire (IPQ), and the Simulator Sickness Questionnaire (SSQ) questionnaires were administered after the VR training. The results showed no differences in wheelchair driving performance, the level of involvement, or the ratings of presence between the two environments. In contrast, the perceived cybersickness was statistically higher for the group of participants who trained in the non-gamified VR environment. Remarkably, heightened cybersickness symptoms aligned with increased HR, suggesting physiological connections. As such, while direct gamification effects on the efficacy of VR-based wheelchair skills training were not statistically significant, its potential to amplify user engagement and reduce cybersickness is evident.
Collapse
Affiliation(s)
- Chantal Zorzi
- School of Engineering, University of Kent, Canterbury CT1 7NT, UK; (C.Z.); (L.T.); (A.C.)
| | - Luma Tabbaa
- School of Engineering, University of Kent, Canterbury CT1 7NT, UK; (C.Z.); (L.T.); (A.C.)
| | - Alexandra Covaci
- School of Engineering, University of Kent, Canterbury CT1 7NT, UK; (C.Z.); (L.T.); (A.C.)
| | - Konstantinos Sirlantzis
- School of Engineering, Technology and Design, Canterbury Christ Church University (CCCU), Canterbury CT1 1QU, UK;
| | - Gianluca Marcelli
- School of Engineering, University of Kent, Canterbury CT1 7NT, UK; (C.Z.); (L.T.); (A.C.)
| |
Collapse
|
5
|
Yadav H, Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-45. [PMID: 37362726 PMCID: PMC10157593 DOI: 10.1007/s11042-023-15653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/17/2022] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for researchers and scientists. It is a suitable combination of software and hardware to operate any device mentally. This review emphasizes the significant stages in the BCI domain, current problems, and state-of-the-art findings. This article also covers how current results can contribute to new knowledge about BCI, an overview of BCI from its early developments to recent advancements, BCI applications, challenges, and future directions. The authors pointed to unresolved issues and expressed how BCI is valuable for analyzing the human brain. Humans' dependence on machines has led humankind into a new future where BCI can play an essential role in improving this modern world.
Collapse
Affiliation(s)
- Hitesh Yadav
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| | - Surita Maini
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| |
Collapse
|
6
|
Zhang L, Chen L, Wang Z, Zhang X, Liu X, Ming D. Enhancing Visual-Guided Motor Imagery Performance via Sensory Threshold Somatosensory Electrical Stimulation Training. IEEE Trans Biomed Eng 2023; 70:756-765. [PMID: 36037456 DOI: 10.1109/tbme.2022.3202189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Motor imagery (MI) based brain- computer interface (BCI) has been widely studied as an effective way to enhance motor learning and promote motor recovery. However, the accuracy of MI-BCI heavily depends on whether subjects can perform MI tasks correctly, which largely limits the general application of MI-BCI. To overcome this limitation, a training strategy based on the combination of MI and sensory threshold somatosensory electrical stimulation (MI+st-SES) is proposed in this study. METHODS Thirty healthy subjects were recruited and randomly divided into SES group and control group. Both groups performed left-hand and right-hand MI tasks in three consecutive blocks. The main difference between two groups lies in the second block, where subjects in SES group received the st-SES during MI tasks whereas the control group performed MI tasks only. RESULTS The results showed that the SES group had a significant improvement in event-related desynchronization (ERD) of alpha rhythm after the training session of MI+st-SES (left-hand: F(2,27) = 9.98, p<0.01; right-hand: F(2, 27) = 10.43, p<0.01). The classification accuracy between left- and right-hand MI in the SES group was also significantly improved following MI+st-SES training (F(2,27) = 6.46, p<0.01). In contrary, there was no significant difference between the first and third blocks in the control group (F(2,27) = 0.18, p = 0.84). The functional connectivity based on weighted pairwise phase consistency (wPPC) over the sensorimotor area also showed an increase after the MI+st-SES training. CONCLUSION AND SIGNIFICANCE Our findings indicate that training based on MI+st-SES is a promising way to foster MI performance and assist subjects in achieving efficient BCI control.
Collapse
|
7
|
Duan X, Xie S, Lv Y, Xie X, Obermayer K, Yan H. A transfer learning-based feedback training motivates the performance of SMR-BCI. J Neural Eng 2023; 20. [PMID: 36577144 DOI: 10.1088/1741-2552/acaee7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Objective. Feedback training is a practical approach to brain-computer interface (BCI) end-users learning to modulate their sensorimotor rhythms (SMRs). BCI self-regulation learning has been shown to be influenced by subjective psychological factors, such as motivation. However, few studies have taken into account the users' self-motivation as additional guidance for the cognitive process involved in BCI learning. In this study we tested a transfer learning (TL) feedback method designed to increase self-motivation by providing information about past performance.Approach. Electroencephalography (EEG) signals from the previous runs were affine transformed and displayed as points on the screen, along with the newly recorded EEG signals in the current run, giving the subjects a context for self-motivation. Subjects were asked to separate the feedback points for the current run under the display of the separability of prior training. We conducted a between-subject feedback training experiment, in which 24 healthy SMR-BCI naive subjects were trained to imagine left- and right-hand movements. The participants were provided with either TL feedback or typical cursor-bar (CB) feedback (control condition), for three sessions on separate days.Main results. The behavioral results showed an increased challenge and stable mastery confidence, suggesting that subjects' motivation grew as the feedback training went on. The EEG results showed favorable overall training effects with TL feedback in terms of the class distinctiveness and EEG discriminancy. Performance was 28.5% higher in the third session than in the first. About 41.7% of the subjects were 'learners' including not only low-performance subjects, but also good-performance subjects who might be affected by the ceiling effect. Subjects were able to control BCI with TL feedback with a higher performance of 60.5% during the last session compared to CB feedback.Significance. The present study demonstrated that the proposed TL feedback method boosted psychological engagement through the self-motivated context, and further allowed subjects to modulate SMR effectively. The proposed TL feedback method also provided an alternative to typical CB feedback.
Collapse
Affiliation(s)
- Xu Duan
- School of Electronics and Information, Northwestern Polytechnical University, Dongxiang Road 1, Xi'an 710129, People's Republic of China.,Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Wenyuan South Road, Xi'an 710128, People's Republic of China
| | - Songyun Xie
- School of Electronics and Information, Northwestern Polytechnical University, Dongxiang Road 1, Xi'an 710129, People's Republic of China
| | - Yanxia Lv
- School of Electronics and Information, Northwestern Polytechnical University, Dongxiang Road 1, Xi'an 710129, People's Republic of China
| | - Xinzhou Xie
- School of Electronics and Information, Northwestern Polytechnical University, Dongxiang Road 1, Xi'an 710129, People's Republic of China
| | - Klaus Obermayer
- Faculty of Electrical Engineering and Computer Science, Technical University Berlin, Marchstraße 23, Berlin 10587, Germany
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Wenyuan South Road, Xi'an 710128, People's Republic of China
| |
Collapse
|
8
|
Chen L, Zhang L, Wang Z, Gu B, Zhang X, Ming D. The Effects of Sensory Threshold Somatosensory Electrical Stimulation on Users With Different MI-BCI Performance. Front Neurosci 2022; 16:909434. [PMID: 35784856 PMCID: PMC9247255 DOI: 10.3389/fnins.2022.909434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Motor imagery-based brain-computer interface (MI-BCI) has been largely studied to improve motor learning and promote motor recovery. However, the difficulty in performing MI limits the widespread application of MI-BCI. It has been suggested that the usage of sensory threshold somatosensory electrical stimulation (st-SES) is a promising way to guide participants on MI tasks, but it is still unclear whether st-SES is effective for all users. In the present study, we aimed to examine the effects of st-SES on the MI-BCI performance in two BCI groups (High Performers and Low Performers). Twenty healthy participants were recruited to perform MI and resting tasks with EEG recordings. These tasks were modulated with or without st-SES. We demonstrated that st-SES improved the performance of MI-BCI in the Low Performers, but led to a decrease in the accuracy of MI-BCI in the High Performers. Furthermore, for the Low Performers, the combination of st-SES and MI resulted in significantly greater event-related desynchronization (ERD) and sample entropy of sensorimotor rhythm than MI alone. However, the ERD and sample entropy values of MI did not change significantly during the st-SES intervention in the High Performers. Moreover, we found that st-SES had an effect on the functional connectivity of the fronto-parietal network in the alpha band of Low Performers and the beta band of High Performers, respectively. Our results demonstrated that somatosensory input based on st-SES was only beneficial for sensorimotor cortical activation and MI-BCI performance in the Low Performers, but not in the High Performers. These findings help to optimize guidance strategies to adapt to different categories of users in the practical application of MI-BCI.
Collapse
Affiliation(s)
- Long Chen
- Department of Biomedical Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lei Zhang
- Department of Biomedical Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhongpeng Wang
- Department of Biomedical Engineering, College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Bin Gu
- Department of Biomedical Engineering, College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xin Zhang
- Department of Biomedical Engineering, College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Department of Biomedical Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Jadavji Z, Zewdie E, Kelly D, Kinney-Lang E, Robu I, Kirton A. Establishing a Clinical Brain-Computer Interface Program for Children With Severe Neurological Disabilities. Cureus 2022; 14:e26215. [PMID: 35891842 PMCID: PMC9307353 DOI: 10.7759/cureus.26215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Children with severe motor impairment but intact cognition are deprived of fundamental human rights. Quadriplegic cerebral palsy is the most common scenario where rehabilitation options remain limited. Brain-computer interfaces (BCI) represent a potential solution, but pediatric populations have been neglected. Direct engagement of children and families could provide meaningful opportunities while informing program development. We describe a patient-centered, clinical, non-invasive pediatric BCI program. METHODS Eligible children were identified within a population-based, tertiary care children's hospital. Criteria included 1) age six to 18 years, 2) severe physical disability (non-ambulatory, minimal hand use), 3) severely limited speech, and 4) evidence of grade 1 cognitive capacity. After initial screening for BCI competency, participants attended regular sessions, attempting commercially available and customized systems to play computer games, control devices, and attempt communication. RESULTS We report the first 10 participants (median 11 years, range 6-16, 60% male). Over 334 hours of participation, there were no serious adverse events. BCI training was well tolerated, with favorable feedback from children and parents. All but one participant demonstrated the ability to perform BCI tasks. The majority performed well, using motor imagery based tasks for games and entertainment. Difficulties were most significant using P300, visual evoked potential based paradigms where maintenance of attention was challenging. Children and families expressed interest in continuing and informing program development. CONCLUSIONS Patient-centered clinical BCI programs are feasible for children with severe disabilities. Carefully selected participants can often learn quickly to perform meaningful tasks on readily available systems. Patient and family motivation and engagement appear high.
Collapse
Affiliation(s)
- Zeanna Jadavji
- Clinical Neuroscience, University of Calgary, Calgary, CAN
| | - Ephrem Zewdie
- Clinical Neuroscience, University of Calgary, Calgary, CAN
| | - Dion Kelly
- Clinical Neuroscience, University of Calgary, Calgary, CAN
| | | | - Ion Robu
- Physical Medicine and Rehabilitation, Alberta Children's Hospital, Calgary, CAN
| | - Adam Kirton
- Pediatrics, Clinical Neuroscience, University of Calgary, Calgary, CAN
| |
Collapse
|
10
|
Pais-Vieira C, Gaspar P, Matos D, Alves LP, da Cruz BM, Azevedo MJ, Gago M, Poleri T, Perrotta A, Pais-Vieira M. Embodiment Comfort Levels During Motor Imagery Training Combined With Immersive Virtual Reality in a Spinal Cord Injury Patient. Front Hum Neurosci 2022; 16:909112. [PMID: 35669203 PMCID: PMC9163805 DOI: 10.3389/fnhum.2022.909112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 02/02/2023] Open
Abstract
Brain-machine interfaces combining visual, auditory, and tactile feedback have been previously used to generate embodiment experiences during spinal cord injury (SCI) rehabilitation. It is not known if adding temperature to these modalities can result in discomfort with embodiment experiences. Here, comfort levels with the embodiment experiences were investigated in an intervention that required a chronic pain SCI patient to generate lower limb motor imagery commands in an immersive environment combining visual (virtual reality -VR), auditory, tactile, and thermal feedback. Assessments were made pre-/ post-, throughout the intervention (Weeks 0-5), and at 7 weeks follow up. Overall, high levels of embodiment in the adapted three-domain scale of embodiment were found throughout the sessions. No significant adverse effects of VR were reported. Although sessions induced only a modest reduction in pain levels, an overall reduction occurred in all pain scales (Faces, Intensity, and Verbal) at follow up. A high degree of comfort in the comfort scale for the thermal-tactile sleeve, in both the thermal and tactile feedback components of the sleeve was reported. This study supports the feasibility of combining multimodal stimulation involving visual (VR), auditory, tactile, and thermal feedback to generate embodiment experiences in neurorehabilitation programs.
Collapse
Affiliation(s)
- Carla Pais-Vieira
- Centro de Investigação Interdisciplinar em Saúde (CIIS), Instituto de Ciências da Saúde (ICS), Universidade Católica Portuguesa, Porto, Portugal
| | - Pedro Gaspar
- Centro de Investigação em Ciência e Tecnologia das Artes (CITAR), Universidade Católica Portuguesa, Porto, Portugal
| | - Demétrio Matos
- ID+ (Instituto de Investigação em Design, Média e Cultura), Instituto Politécnico do Cávado e do Ave, Vila Frescainha, Portugal
| | - Leonor Palminha Alves
- Human Robotics Group, Centro de Sistemas Inteligentes do IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Bárbara Moreira da Cruz
- Serviço de Medicina Física e Reabilitação, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Maria João Azevedo
- Serviço de Medicina Física e Reabilitação, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Miguel Gago
- Serviço de Neurologia, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Tânia Poleri
- Plano de Ação para Apoio aos Deficientes Militares, Porto, Portugal
| | - André Perrotta
- Centre for Informatics and Systems of the University of Coimbra (CISUC), Coimbra, Portugal
| | - Miguel Pais-Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain activity stimulated by the motor imagery paradigm (MI) is measured by Electroencephalography (EEG), which has several advantages to be implemented with the widely used Brain–Computer Interfaces (BCIs) technology. However, the substantial inter/intra variability of recorded data significantly influences individual skills on the achieved performance. This study explores the ability to distinguish between MI tasks and the interpretability of the brain’s ability to produce elicited mental responses with improved accuracy. We develop a Deep and Wide Convolutional Neuronal Network fed by a set of topoplots extracted from the multichannel EEG data. Further, we perform a visualization technique based on gradient-based class activation maps (namely, GradCam++) at different intervals along the MI paradigm timeline to account for intra-subject variability in neural responses over time. We also cluster the dynamic spatial representation of the extracted maps across the subject set to come to a deeper understanding of MI-BCI coordination skills. According to the results obtained from the evaluated GigaScience Database of motor-evoked potentials, the developed approach enhances the physiological explanation of motor imagery in aspects such as neural synchronization between rhythms, brain lateralization, and the ability to predict the MI onset responses and their evolution during training sessions.
Collapse
|
12
|
Ziadeh H, Gulyas D, Nielsen LD, Lehmann S, Nielsen TB, Kjeldsen TKK, Hougaard BI, Jochumsen M, Knoche H. "Mine Works Better": Examining the Influence of Embodiment in Virtual Reality on the Sense of Agency During a Binary Motor Imagery Task With a Brain-Computer Interface. Front Psychol 2022; 12:806424. [PMID: 35002899 PMCID: PMC8741301 DOI: 10.3389/fpsyg.2021.806424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Motor imagery-based brain-computer interfaces (MI-BCI) have been proposed as a means for stroke rehabilitation, which combined with virtual reality allows for introducing game-based interactions into rehabilitation. However, the control of the MI-BCI may be difficult to obtain and users may face poor performance which frustrates them and potentially affects their motivation to use the technology. Decreases in motivation could be reduced by increasing the users' sense of agency over the system. The aim of this study was to understand whether embodiment (ownership) of a hand depicted in virtual reality can enhance the sense of agency to reduce frustration in an MI-BCI task. Twenty-two healthy participants participated in a within-subject study where their sense of agency was compared in two different embodiment experiences: 1) avatar hand (with body), or 2) abstract blocks. Both representations closed with a similar motion for spatial congruency and popped a balloon as a result. The hand/blocks were controlled through an online MI-BCI. Each condition consisted of 30 trials of MI-activation of the avatar hand/blocks. After each condition a questionnaire probed the participants' sense of agency, ownership, and frustration. Afterwards, a semi-structured interview was performed where the participants elaborated on their ratings. Both conditions supported similar levels of MI-BCI performance. A significant correlation between ownership and agency was observed (r = 0.47, p = 0.001). As intended, the avatar hand yielded much higher ownership than the blocks. When controlling for performance, ownership increased sense of agency. In conclusion, designers of BCI-based rehabilitation applications can draw on anthropomorphic avatars for the visual mapping of the trained limb to improve ownership. While not While not reducing frustration ownership can improve perceived agency given sufficient BCI performance. In future studies the findings should be validated in stroke patients since they may perceive agency and ownership differently than able-bodied users.
Collapse
Affiliation(s)
- Hamzah Ziadeh
- Human Machine Interaction Lab, Department of Architecture, Design, and Media Technology, Institute for Architecture and Media Technology, Aalborg University, Aalborg, Denmark
| | - David Gulyas
- Human Machine Interaction Lab, Department of Architecture, Design, and Media Technology, Institute for Architecture and Media Technology, Aalborg University, Aalborg, Denmark
| | - Louise Dørr Nielsen
- Human Machine Interaction Lab, Department of Architecture, Design, and Media Technology, Institute for Architecture and Media Technology, Aalborg University, Aalborg, Denmark
| | - Steffen Lehmann
- Human Machine Interaction Lab, Department of Architecture, Design, and Media Technology, Institute for Architecture and Media Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Bendix Nielsen
- Human Machine Interaction Lab, Department of Architecture, Design, and Media Technology, Institute for Architecture and Media Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Kim Kroman Kjeldsen
- Human Machine Interaction Lab, Department of Architecture, Design, and Media Technology, Institute for Architecture and Media Technology, Aalborg University, Aalborg, Denmark
| | - Bastian Ilsø Hougaard
- Human Machine Interaction Lab, Department of Architecture, Design, and Media Technology, Institute for Architecture and Media Technology, Aalborg University, Aalborg, Denmark
| | - Mads Jochumsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hendrik Knoche
- Human Machine Interaction Lab, Department of Architecture, Design, and Media Technology, Institute for Architecture and Media Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Park S, Ha J, Kim DH, Kim L. Improving Motor Imagery-Based Brain-Computer Interface Performance Based on Sensory Stimulation Training: An Approach Focused on Poorly Performing Users. Front Neurosci 2021; 15:732545. [PMID: 34803582 PMCID: PMC8602688 DOI: 10.3389/fnins.2021.732545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The motor imagery (MI)-based brain-computer interface (BCI) is an intuitive interface that provides control over computer applications directly from brain activity. However, it has shown poor performance compared to other BCI systems such as P300 and SSVEP BCI. Thus, this study aimed to improve MI-BCI performance by training participants in MI with the help of sensory inputs from tangible objects (i.e., hard and rough balls), with a focus on poorly performing users. The proposed method is a hybrid of training and imagery, combining motor execution and somatosensory sensation from a ball-type stimulus. Fourteen healthy participants participated in the somatosensory-motor imagery (SMI) experiments (within-subject design) involving EEG data classification with a three-class system (signaling with left hand, right hand, or right foot). In the scenario of controlling a remote robot to move it to the target point, the participants performed MI when faced with a three-way intersection. The SMI condition had a better classification performance than did the MI condition, achieving a 68.88% classification performance averaged over all participants, which was 6.59% larger than that in the MI condition (p < 0.05). In poor performers, the classification performance in SMI was 10.73% larger than in the MI condition (62.18% vs. 51.45%). However, good performers showed a slight performance decrement (0.86%) in the SMI condition compared to the MI condition (80.93% vs. 81.79%). Combining the brain signals from the motor and somatosensory cortex, the proposed hybrid MI-BCI system demonstrated improved classification performance, this phenomenon was predominant in poor performers (eight out of nine subjects). Hybrid MI-BCI systems may significantly contribute to reducing the proportion of BCI-inefficiency users and closing the performance gap with other BCI systems.
Collapse
Affiliation(s)
- Sangin Park
- Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jihyeon Ha
- Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Da-Hye Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Laehyun Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, South Korea
| |
Collapse
|
14
|
Barresi G, Marinelli A, Caserta G, de Zambotti M, Tessadori J, Angioletti L, Boccardo N, Freddolini M, Mazzanti D, Deshpande N, Frigo CA, Balconi M, Gruppioni E, Laffranchi M, De Michieli L. Exploring the Embodiment of a Virtual Hand in a Spatially Augmented Respiratory Biofeedback Setting. Front Neurorobot 2021; 15:683653. [PMID: 34557082 PMCID: PMC8454775 DOI: 10.3389/fnbot.2021.683653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Enhancing the embodiment of artificial limbs-the individuals' feeling that a virtual or robotic limb is integrated in their own body scheme-is an impactful strategy for improving prosthetic technology acceptance and human-machine interaction. Most studies so far focused on visuo-tactile strategies to empower the embodiment processes. However, novel approaches could emerge from self-regulation techniques able to change the psychophysiological conditions of an individual. Accordingly, this pilot study investigates the effects of a self-regulated breathing exercise on the processes of body ownership underlying the embodiment of a virtual right hand within a Spatially Augmented Respiratory Biofeedback (SARB) setting. This investigation also aims at evaluating the feasibility of the breathing exercise enabled by a low-cost SARB implementation designed for upcoming remote studies (a need emerged during the COVID-19 pandemic). Twenty-two subjects without impairments, and two transradial prosthesis users for a preparatory test, were asked (in each condition of a within-group design) to maintain a normal (about 14 breaths/min) or slow (about 6 breaths/min) respiratory rate to keep a static virtual right hand "visible" on a screen. Meanwhile, a computer-generated sphere moved from left to right toward the virtual hand during each trial (1 min) of 16. If the participant's breathing rate was within the target (slow or normal) range, a visuo-tactile event was triggered by the sphere passing under the virtual hand (the subjects observed it shaking while they perceived a vibratory feedback generated by a smartphone). Our results-mainly based on questionnaire scores and proprioceptive drift-highlight that the slow breathing condition induced higher embodiment than the normal one. This preliminary study reveals the feasibility and potential of a novel psychophysiological training strategy to enhance the embodiment of artificial limbs. Future studies are needed to further investigate mechanisms, efficacy and generalizability of the SARB techniques in training a bionic limb embodiment.
Collapse
Affiliation(s)
- Giacinto Barresi
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Marinelli
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering, Università degli Studi di Genova, Genoa, Italy
| | - Giulia Caserta
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
- Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Jacopo Tessadori
- Visual Geometry and Modelling, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Nicolò Boccardo
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marco Freddolini
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Dario Mazzanti
- Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Nikhil Deshpande
- Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Carlo Albino Frigo
- Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Emanuele Gruppioni
- Centro Protesi INAIL, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, Bologna, Italy
| | | | | |
Collapse
|
15
|
Robinson N, Chouhan T, Mihelj E, Kratka P, Debraine F, Wenderoth N, Guan C, Lehner R. Design Considerations for Long Term Non-invasive Brain Computer Interface Training With Tetraplegic CYBATHLON Pilot. Front Hum Neurosci 2021; 15:648275. [PMID: 34211380 PMCID: PMC8239283 DOI: 10.3389/fnhum.2021.648275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Several studies in the recent past have demonstrated how Brain Computer Interface (BCI) technology can uncover the neural mechanisms underlying various tasks and translate them into control commands. While a multitude of studies have demonstrated the theoretic potential of BCI, a point of concern is that the studies are still confined to lab settings and mostly limited to healthy, able-bodied subjects. The CYBATHLON 2020 BCI race represents an opportunity to further develop BCI design strategies for use in real-time applications with a tetraplegic end user. In this study, as part of the preparation to participate in CYBATHLON 2020 BCI race, we investigate the design aspects of BCI in relation to the choice of its components, in particular, the type of calibration paradigm and its relevance for long-term use. The end goal was to develop a user-friendly and engaging interface suited for long-term use, especially for a spinal-cord injured (SCI) patient. We compared the efficacy of conventional open-loop calibration paradigms with real-time closed-loop paradigms, using pre-trained BCI decoders. Various indicators of performance were analyzed for this study, including the resulting classification performance, game completion time, brain activation maps, and also subjective feedback from the pilot. Our results show that the closed-loop calibration paradigms with real-time feedback is more engaging for the pilot. They also show an indication of achieving better online median classification performance as compared to conventional calibration paradigms (p = 0.0008). We also observe that stronger and more localized brain activation patterns are elicited in the closed-loop paradigm in which the experiment interface closely resembled the end application. Thus, based on this longitudinal evaluation of single-subject data, we demonstrate that BCI-based calibration paradigms with active user-engagement, such as with real-time feedback, could help in achieving better user acceptability and performance.
Collapse
Affiliation(s)
- Neethu Robinson
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tushar Chouhan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Future Health Technologies, Singapore-ETH Centre, Singapore, Singapore
| | - Ernest Mihelj
- Neural Control of Movement Lab, Department of Health Science and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Paulina Kratka
- Neural Control of Movement Lab, Department of Health Science and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Frédéric Debraine
- Neural Control of Movement Lab, Department of Health Science and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Future Health Technologies, Singapore-ETH Centre, Singapore, Singapore.,Neural Control of Movement Lab, Department of Health Science and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Future Health Technologies, Singapore-ETH Centre, Singapore, Singapore
| | - Rea Lehner
- Future Health Technologies, Singapore-ETH Centre, Singapore, Singapore.,Neural Control of Movement Lab, Department of Health Science and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Systematic review of training environments with motor imagery brain–computer interface: Coherent taxonomy, open issues and recommendation pathway solution. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-021-00560-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Leeuwis N, Paas A, Alimardani M. Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces. Front Hum Neurosci 2021; 15:634748. [PMID: 33889080 PMCID: PMC8055841 DOI: 10.3389/fnhum.2021.634748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Brain-computer interfaces (BCIs) are communication bridges between a human brain and external world, enabling humans to interact with their environment without muscle intervention. Their functionality, therefore, depends on both the BCI system and the cognitive capacities of the user. Motor-imagery BCIs (MI-BCI) rely on the users' mental imagination of body movements. However, not all users have the ability to sufficiently modulate their brain activity for control of a MI-BCI; a problem known as BCI illiteracy or inefficiency. The underlying mechanism of this phenomenon and the cause of such difference among users is yet not fully understood. In this study, we investigated the impact of several cognitive and psychological measures on MI-BCI performance. Fifty-five novice BCI-users participated in a left- versus right-hand motor imagery task. In addition to their BCI classification error rate and demographics, psychological measures including personality factors, affinity for technology, and motivation during the experiment, as well as cognitive measures including visuospatial memory and spatial ability and Vividness of Visual Imagery were collected. Factors that were found to have a significant impact on MI-BCI performance were Vividness of Visual Imagery, and the personality factors of orderliness and autonomy. These findings shed light on individual traits that lead to difficulty in BCI operation and hence can help with early prediction of inefficiency among users to optimize training for them.
Collapse
Affiliation(s)
- Nikki Leeuwis
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | | | | |
Collapse
|
18
|
Jeong H, Kim J. Development of a Guidance System for Motor Imagery Enhancement Using the Virtual Hand Illusion. SENSORS 2021; 21:s21062197. [PMID: 33801070 PMCID: PMC8003913 DOI: 10.3390/s21062197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023]
Abstract
Motor imagery (MI) is widely used to produce input signals for brain-computer interfaces (BCI) due to the similarities between MI-BCI and the planning-execution cycle. Despite its usefulness, MI tasks can be ambiguous to users and MI produces weaker cortical signals than motor execution. Existing MI guidance systems, which have been reported to provide visual guidance for MI and enhance MI, still have limitations: insufficient immersion for MI or poor expandability to MI for another body parts. We propose a guidance system for MI enhancement that can immerse users in MI and will be easy to extend to other body parts and target motions with few physical constraints. To make easily extendable MI guidance system, the virtual hand illusion is applied to the MI guidance system with a motion tracking sensor. MI enhancement was evaluated in 11 healthy people by comparison with another guidance system and conventional motor commands for BCI. The results showed that the proposed MI guidance system produced an amplified cortical signal compared to pure MI (p < 0.017), and a similar cortical signal as those produced by both actual execution (p > 0.534) and an MI guidance system with the rubber hand illusion (p > 0.722) in the contralateral region. Therefore, we believe that the proposed MI guidance system with the virtual hand illusion is a viable alternative to existing MI guidance systems in various applications with MI-BCI.
Collapse
|
19
|
Singh A, Hussain AA, Lal S, Guesgen HW. A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface. SENSORS 2021; 21:s21062173. [PMID: 33804611 PMCID: PMC8003721 DOI: 10.3390/s21062173] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
Motor imagery (MI) based brain–computer interface (BCI) aims to provide a means of communication through the utilization of neural activity generated due to kinesthetic imagination of limbs. Every year, a significant number of publications that are related to new improvements, challenges, and breakthrough in MI-BCI are made. This paper provides a comprehensive review of the electroencephalogram (EEG) based MI-BCI system. It describes the current state of the art in different stages of the MI-BCI (data acquisition, MI training, preprocessing, feature extraction, channel and feature selection, and classification) pipeline. Although MI-BCI research has been going for many years, this technology is mostly confined to controlled lab environments. We discuss recent developments and critical algorithmic issues in MI-based BCI for commercial deployment.
Collapse
|
20
|
Multi-Session Influence of Two Modalities of Feedback and Their Order of Presentation on MI-BCI User Training. MULTIMODAL TECHNOLOGIES AND INTERACTION 2021. [DOI: 10.3390/mti5030012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
By performing motor-imagery tasks, for example, imagining hand movements, Motor-Imagery based Brain-Computer Interfaces (MI-BCIs) users can control digital technologies, for example, neuroprosthesis, using their brain activity only. MI-BCI users need to train, usually using a unimodal visual feedback, to produce brain activity patterns that are recognizable by the system. The literature indicates that multimodal vibrotactile and visual feedback is more effective than unimodal visual feedback, at least for short term training. However, the multi-session influence of such multimodal feedback on MI-BCI user training remained unknown, so did the influence of the order of presentation of the feedback modalities. In our experiment, 16 participants trained to control a MI-BCI during five sessions with a realistic visual feedback and five others with both a realistic visual feedback and a vibrotactile one. training benefits from a multimodal feedback, in terms of performances and self-reported mindfulness. There is also a significant influence of the order presentation of the modality. Participants who started training with a visual feedback had higher performances than those who started training with a multimodal feedback. We recommend taking into account the order of presentation for future experiments assessing the influence of several modalities of feedback.
Collapse
|
21
|
Saha S, Mamun KA, Ahmed K, Mostafa R, Naik GR, Darvishi S, Khandoker AH, Baumert M. Progress in Brain Computer Interface: Challenges and Opportunities. Front Syst Neurosci 2021; 15:578875. [PMID: 33716680 PMCID: PMC7947348 DOI: 10.3389/fnsys.2021.578875] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Brain computer interfaces (BCI) provide a direct communication link between the brain and a computer or other external devices. They offer an extended degree of freedom either by strengthening or by substituting human peripheral working capacity and have potential applications in various fields such as rehabilitation, affective computing, robotics, gaming, and neuroscience. Significant research efforts on a global scale have delivered common platforms for technology standardization and help tackle highly complex and non-linear brain dynamics and related feature extraction and classification challenges. Time-variant psycho-neurophysiological fluctuations and their impact on brain signals impose another challenge for BCI researchers to transform the technology from laboratory experiments to plug-and-play daily life. This review summarizes state-of-the-art progress in the BCI field over the last decades and highlights critical challenges.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Khondaker A. Mamun
- Advanced Intelligent Multidisciplinary Systems (AIMS) Lab, Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Khawza Ahmed
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Raqibul Mostafa
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Ganesh R. Naik
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sam Darvishi
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Ahsan H. Khandoker
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Visual-Electrotactile Stimulation Feedback to Improve Immersive Brain-Computer Interface Based on Hand Motor Imagery. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021. [DOI: 10.1155/2021/8832686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the aging society, the number of people suffering from vascular disorders is rapidly increasing and has become a social problem. The death rate due to stroke, which is the second leading cause of global mortality, has increased by 40% in the last two decades. Stroke can also cause paralysis. Of late, brain-computer interfaces (BCIs) have been garnering attention in the rehabilitation field as assistive technology. A BCI for the motor rehabilitation of patients with paralysis promotes neural plasticity, when subjects perform motor imagery (MI). Feedback, such as visual and proprioceptive, influences brain rhythm modulation to contribute to MI learning and motor function restoration. Also, virtual reality (VR) can provide powerful graphical options to enhance feedback visualization. This work aimed to improve immersive VR-BCI based on hand MI, using visual-electrotactile stimulation feedback instead of visual feedback. The MI tasks include grasping, flexion/extension, and their random combination. Moreover, the subjects answered a system perception questionnaire after the experiments. The proposed system was evaluated with twenty able-bodied subjects. Visual-electrotactile feedback improved the mean classification accuracy for the grasping (93.00%
3.50%) and flexion/extension (95.00%
5.27%) MI tasks. Additionally, the subjects achieved an acceptable mean classification accuracy (maximum of 86.5%
5.80%) for the random MI task, which required more concentration. The proprioceptive feedback maintained lower mean power spectral density in all channels and higher attention levels than those of visual feedback during the test trials for the grasping and flexion/extension MI tasks. Also, this feedback generated greater relative power in the
-band for the premotor cortex, which indicated better MI preparation. Thus, electrotactile stimulation along with visual feedback enhanced the immersive VR-BCI classification accuracy by 5.5% and 4.5% for the grasping and flexion/extension MI tasks, respectively, retained the subject’s attention, and eased MI better than visual feedback alone.
Collapse
|
23
|
Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci 2021; 11:brainsci11020221. [PMID: 33670277 PMCID: PMC7918687 DOI: 10.3390/brainsci11020221] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Our access to computer-generated worlds changes the way we feel, how we think, and how we solve problems. In this review, we explore the utility of different types of virtual reality, immersive or non-immersive, for providing controllable, safe environments that enable individual training, neurorehabilitation, or even replacement of lost functions. The neurobiological effects of virtual reality on neuronal plasticity have been shown to result in increased cortical gray matter volumes, higher concentration of electroencephalographic beta-waves, and enhanced cognitive performance. Clinical application of virtual reality is aided by innovative brain–computer interfaces, which allow direct tapping into the electric activity generated by different brain cortical areas for precise voluntary control of connected robotic devices. Virtual reality is also valuable to healthy individuals as a narrative medium for redesigning their individual stories in an integrative process of self-improvement and personal development. Future upgrades of virtual reality-based technologies promise to help humans transcend the limitations of their biological bodies and augment their capacity to mold physical reality to better meet the needs of a globalized world.
Collapse
|
24
|
Abstract
Electroencephalogram signals are used to assess neurodegenerative diseases and develop sophisticated brain machine interfaces for rehabilitation and gaming. Most of the applications use only motor imagery or evoked potentials. Here, a deep learning network based on a sensory motor paradigm (auditory, olfactory, movement, and motor-imagery) that employs a subject-agnostic Bidirectional Long Short-Term Memory (BLSTM) Network is developed to assess cognitive functions and identify its relationship with brain signal features, which is hypothesized to consistently indicate cognitive decline. Testing occurred with healthy subjects of age 20–40, 40–60, and >60, and mildly cognitive impaired subjects. Auditory and olfactory stimuli were presented to the subjects and the subjects imagined and conducted movement of each arm during which Electroencephalogram (EEG)/Electromyogram (EMG) signals were recorded. A deep BLSTM Neural Network is trained with Principal Component features from evoked signals and assesses their corresponding pathways. Wavelet analysis is used to decompose evoked signals and calculate the band power of component frequency bands. This deep learning system performs better than conventional deep neural networks in detecting MCI. Most features studied peaked at the age range 40–60 and were lower for the MCI group than for any other group tested. Detection accuracy of left-hand motor imagery signals best indicated cognitive aging (p = 0.0012); here, the mean classification accuracy per age group declined from 91.93% to 81.64%, and is 69.53% for MCI subjects. Motor-imagery-evoked band power, particularly in gamma bands, best indicated (p = 0.007) cognitive aging. Although the classification accuracy of the potentials effectively distinguished cognitive aging from MCI (p < 0.05), followed by gamma-band power.
Collapse
|
25
|
de Castro-Cros M, Sebastian-Romagosa M, Rodríguez-Serrano J, Opisso E, Ochoa M, Ortner R, Guger C, Tost D. Effects of Gamification in BCI Functional Rehabilitation. Front Neurosci 2020; 14:882. [PMID: 32973435 PMCID: PMC7472985 DOI: 10.3389/fnins.2020.00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To evaluate whether introducing gamification in BCI rehabilitation of the upper limbs of post-stroke patients has a positive impact on their experience without altering their efficacy in creating motor mental images (MI). Design A game was designed purposely adapted to the pace and goals of an established BCI-rehabilitation protocol. Rehabilitation was based on a double feedback: functional electrostimulation and animation of a virtual avatar of the patient’s limbs. The game introduced a narrative on top of this visual feedback with an external goal to achieve (protecting bits of cheese from a rat character). A pilot study was performed with 10 patients and a control group of six volunteers. Two rehabilitation sessions were done, each made up of one stage of calibration and two training stages, some stages with the game and others without. The accuracy of the classification computed was taken as a measure to compare the efficacy of MI. Users’ opinions were gathered through a questionnaire. No potentially identifiable human images or data are presented in this study. Results The gamified rehabilitation presented in the pilot study does not impact on the efficacy of MI, but it improves users experience making it more fun. Conclusion These preliminary results are encouraging to continue investigating how game narratives can be introduced in BCI rehabilitation to make it more gratifying and engaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Rupert Ortner
- g.tec medical engineering Spain S.L., Barcelona, Spain
| | - Christoph Guger
- g.tec medical engineering Spain S.L., Barcelona, Spain.,g.tec medical engineering GmbH, Schiedlberg, Austria.,Guger Technologies (Austria), Graz, Austria
| | - Dani Tost
- Universitat Politecnica de Catalunya, Barcelona, Spain.,Research Center in Biomedical Engineering (CREB), Barcelona, Spain.,Sant Joan de Déu Research Institute, Esplugues de Llobregat, Spain
| |
Collapse
|