1
|
Tseng SC, Cherry D, Ko M, Fisher SR, Furtado M, Chang SH. The effects of combined transcranial brain stimulation and a 4-week visuomotor stepping training on voluntary step initiation in persons with chronic stroke-a pilot study. Front Neurol 2024; 15:1286856. [PMID: 38450075 PMCID: PMC10915046 DOI: 10.3389/fneur.2024.1286856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Purpose Evidence suggests that transcranial direct current stimulation (tDCS) can enhance motor performance and learning of hand tasks in persons with chronic stroke (PCS). However, the effects of tDCS on the locomotor tasks in PCS are unclear. This pilot study aimed to: (1) determine aggregate effects of anodal tDCS combined with step training on improvements of the neural and biomechanical attributes of stepping initiation in a small cohort of persons with chronic stroke (PCS) over a 4-week training program; and (2) assess the feasibility and efficacy of this novel approach for improving voluntary stepping initiation in PCS. Methods A total of 10 PCS were randomly assigned to one of two training groups, consisting of either 12 sessions of VST paired with a-tDCS (n = 6) or sham tDCS (s-tDCS, n = 4) over 4 weeks, with step initiation (SI) tests at pre-training, post-training, 1-week and 1-month follow-ups. Primary outcomes were: baseline vertical ground reaction force (B-vGRF), response time (RT) to initiate anticipatory postural adjustment (APA), and the retention of B-VGRF and RT. Results a-tDCS paired with a 4-week VST program results in a significant increase in paretic weight loading at 1-week follow up. Furthermore, a-tDCS in combination with VST led to significantly greater retention of paretic BWB compared with the sham group at 1 week post-training. Clinical implications The preliminary findings suggest a 4-week VST results in improved paretic limb weight bearing (WB) during SI in PCS. Furthermore, VST combined with a-tDCS may lead to better retention of gait improvements (NCT04437251) (https://classic.clinicaltrials.gov/ct2/show/NCT04437251).
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- Neuromechanics Laboratory, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Dana Cherry
- Neuromechanics Laboratory, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Mansoo Ko
- Neuromechanics Laboratory, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven R. Fisher
- Neuromechanics Laboratory, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael Furtado
- Department of Physical Therapy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, United States
| | - Shuo-Hsiu Chang
- Neuromuscular Plasticity Laboratory, Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
2
|
Ryan JL, Eng E, Fehlings DL, Wright FV, Levac DE, Beal DS. Motor Evoked Potential Amplitude in Motor Behavior-based Transcranial Direct Current Stimulation Studies: A Systematic Review. J Mot Behav 2023; 55:313-329. [PMID: 36919517 DOI: 10.1080/00222895.2023.2184320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Motor evoked potential amplitude (MEPamp) is frequently measured in transcranial direct current stimulation (tDCS) studies that target the primary motor cortex (M1), and a subset of these studies involve motor behavior. This systematic review explored the role of MEPamp as an indicator of neural change in M1-targeted tDCS studies involving motor behavior (i.e., motor practice and/or evaluation of motor performance) in healthy individuals, and examined the association between changes in motor performance and MEPamp. We executed our search strategy across four bibliographic databases. Twenty-two manuscripts met eligibility criteria. While anodal tDCS combined with motor practice frequently increased MEPamp, MEPamp outcomes did not necessarily align with changes in motor performance. Thus, MEPamp may not be the most appropriate indicator of neural change in tDCS studies that aim to improve motor performance.
Collapse
Affiliation(s)
- Jennifer L Ryan
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Emily Eng
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Darcy L Fehlings
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - F Virginia Wright
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada.,Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Danielle E Levac
- School of Rehabilitation, University of Montreal, Montreal, Canada
| | - Deryk S Beal
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Evans NH, Suri C, Field-Fote EC. Walking and Balance Outcomes Are Improved Following Brief Intensive Locomotor Skill Training but Are Not Augmented by Transcranial Direct Current Stimulation in Persons With Chronic Spinal Cord Injury. Front Hum Neurosci 2022; 16:849297. [PMID: 35634208 PMCID: PMC9130633 DOI: 10.3389/fnhum.2022.849297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Motor training to improve walking and balance function is a common aspect of rehabilitation following motor-incomplete spinal cord injury (MISCI). Evidence suggests that moderate- to high-intensity exercise facilitates neuroplastic mechanisms that support motor skill acquisition and learning. Furthermore, enhancing corticospinal drive via transcranial direct current stimulation (tDCS) may augment the effects of motor training. In this pilot study, we investigated whether a brief moderate-intensity locomotor-related motor skill training (MST) circuit, with and without tDCS, improved walking and balance outcomes in persons with MISCI. In addition, we examined potential differences between within-day (online) and between-day (offline) effects of MST. Twenty-six adults with chronic MISCI, who had some walking ability, were enrolled in a 5-day double-blind, randomized study with a 3-day intervention period. Participants were assigned to an intensive locomotor MST circuit and concurrent application of either sham tDCS (MST+tDCSsham) or active tDCS (MST+tDCS). The primary outcome was overground walking speed measured during the 10-meter walk test. Secondary outcomes included spatiotemporal gait characteristics (cadence and stride length), peak trailing limb angle (TLA), intralimb coordination (ACC), the Berg Balance Scale (BBS), and the Falls Efficacy Scale-International (FES-I) questionnaire. Analyses revealed a significant effect of the MST circuit, with improvements in walking speed, cadence, bilateral stride length, stronger limb TLA, weaker limb ACC, BBS, and FES-I observed in both the MST+tDCSsham and MST+tDCS groups. No differences in outcomes were observed between groups. Between-day change accounted for a greater percentage of the overall change in walking outcomes. In persons with MISCI, brief intensive MST involving a circuit of ballistic, cyclic locomotor-related skill activities improved walking outcomes, and selected strength and balance outcomes; however, concurrent application of tDCS did not further enhance the effects of MST.
Collapse
Affiliation(s)
- Nicholas H. Evans
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Cazmon Suri
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
| | - Edelle C. Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Edelle C. Field-Fote,
| |
Collapse
|
4
|
Wang B, Xiao S, Yu C, Zhou J, Fu W. Effects of Transcranial Direct Current Stimulation Combined With Physical Training on the Excitability of the Motor Cortex, Physical Performance, and Motor Learning: A Systematic Review. Front Neurosci 2021; 15:648354. [PMID: 33897361 PMCID: PMC8062775 DOI: 10.3389/fnins.2021.648354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose: This systematic review aims to examine the efficacy of transcranial direct current stimulation (tDCS) combined with physical training on the excitability of the motor cortex, physical performance, and motor learning. Methods: A systematic search was performed on PubMed, Web of Science, and EBSCO databases for relevant research published from inception to August 2020. Eligible studies included those that used a randomized controlled design and reported the effects of tDCS combined with physical training to improve motor-evoked potential (MEP), dynamic posture stability index (DPSI), reaction time, and error rate on participants without nervous system diseases. The risk of bias was assessed by the Cochrane risk of bias assessment tool. Results: Twenty-four of an initial yield of 768 studies met the eligibility criteria. The risk of bias was considered low. Results showed that anodal tDCS combined with physical training can significantly increase MEP amplitude, decrease DPSI, increase muscle strength, and decrease reaction time and error rate in motor learning tasks. Moreover, the gain effect is significantly greater than sham tDCS combined with physical training. Conclusion: tDCS combined with physical training can effectively improve the excitability of the motor cortex, physical performance, and motor learning. The reported results encourage further research to understand further the synergistic effects of tDCS combined with physical training.
Collapse
Affiliation(s)
- Baofeng Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Changxiao Yu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|