1
|
Zhao YN, Han PP, Zhang XY, Bi X. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging During Rehabilitation Following Stroke: A Review. Med Sci Monit 2024; 30:e943785. [PMID: 38879751 PMCID: PMC11188690 DOI: 10.12659/msm.943785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/22/2024] Open
Abstract
Stroke is a cerebrovascular disease that impairs blood supply to localized brain tissue regions due to various causes. This leads to ischemic and hypoxic lesions, necrosis of the brain tissue, and a variety of functional disorders. Abnormal cortical activation and functional connectivity occur in the brain after a stroke, but the activation patterns and functional reorganization are not well understood. Rehabilitation interventions can enhance functional recovery in stroke patients. However, clinicians require objective measures to support their practice, as outcome measures for functional recovery are based on scale scores. Furthermore, the most effective rehabilitation measures for treating patients are yet to be investigated. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method that detects changes in cerebral hemodynamics during task performance. It is widely used in neurological research and clinical practice due to its safety, portability, high motion tolerance, and low cost. This paper briefly introduces the imaging principle and the advantages and disadvantages of fNIRS to summarize the application of fNIRS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
| |
Collapse
|
2
|
Bonnal J, Ozsancak C, Monnet F, Valery A, Prieur F, Auzou P. Neural Substrates for Hand and Shoulder Movement in Healthy Adults: A Functional near Infrared Spectroscopy Study. Brain Topogr 2023:10.1007/s10548-023-00972-x. [PMID: 37202647 DOI: 10.1007/s10548-023-00972-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Characterization of cortical activation patterns during movements in healthy adults may help our understanding of how the injured brain works. Upper limb motor tasks are commonly used to assess impaired motor function and to predict recovery in individuals with neurological disorders such as stroke. This study aimed to explore cortical activation patterns associated with movements of the hand and shoulder using functional near-infrared spectroscopy (fNIRS) and to demonstrate the potential of this technology to distinguish cerebral activation between distal and proximal movements. Twenty healthy, right-handed participants were recruited. Two 10-s motor tasks (right-hand opening-closing and right shoulder abduction-adduction) were performed in a sitting position at a rate of 0.5 Hz in a block paradigm. We measured the variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations. fNIRS was performed with a 24-channel system (Brite 24®; Artinis) that covered most motor control brain regions bilaterally. Activation was mostly contralateral for both hand and shoulder movements. Activation was more lateral for hand movements and more medial for shoulder movements, as predicted by the classical homunculus representation. Both HbO2 and HbR concentrations varied with the activity. Our results showed that fNIRS can distinguish patterns of cortical activity in upper limb movements under ecological conditions. These results suggest that fNIRS can be used to measure spontaneous motor recovery and rehabilitation-induced recovery after brain injury. The trial was restropectively registered on January 20, 2023: NCT05691777 (clinicaltrial.gov).
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France.
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France.
- CIAMS, Université d'Orléans, 45067, Orléans, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fanny Monnet
- Institut Denis Poisson, Bâtiment de mathématiques, Université d'Orléans, CNRS, Université de Tours, Institut Universitaire de France, Rue de Chartres, 45067, Orléans cedex 2, B.P. 6759, France
| | - Antoine Valery
- Département d'Informations Médicales, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| |
Collapse
|
3
|
Borrell JA, Fraser K, Manattu AK, Zuniga JM. Laterality Index Calculations in a Control Study of Functional Near Infrared Spectroscopy. Brain Topogr 2023; 36:210-222. [PMID: 36757503 DOI: 10.1007/s10548-023-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Hemispheric dominance has been used to understand the influence of central and peripheral neural damage on the motor function of individuals with stroke, cerebral palsy, and limb loss. It has been well established that greater activation occurs in the contralateral hemisphere to the side of the body used to perform the task. However, there is currently a large variability in calculation procedures for brain laterality when using functional near-infrared spectroscopy (fNIRS) as a non-invasive neuroimaging tool. In this study, we used fNIRS to measure brain activity over the left and right sensorimotor cortices while participants (n = 20, healthy and uninjured) performed left and right-hand movement tasks. Then, we analyzed the fNIRS data using two different processing pipelines (block averaging or general linear model [GLM]), two different criteria of processing for negative values (include all beta values or include only positive beta values), and three different laterality index (LI) formulas. The LI values produced using the block averaging analysis indicated an expected contralateral dominance with some instances of bilateral dominance, which agreed with the expected contralateral activation. However, the inclusion criteria nor the LI formulas altered the outcome. The LI values produced using the GLM analysis displayed a robust left hemisphere dominance regardless of the hand performing the task, which disagreed with the expected contralateral activation but did provide instances of correctly identifying brain laterality. In conclusion, both analysis pipelines were able to correctly determine brain laterality, but processes to account for negative beta values were recommended especially when utilizing the GLM analysis to determine brain laterality.
Collapse
Affiliation(s)
- Jordan A Borrell
- Department of Biomechanics 1, University of Nebraska at Omaha, Omaha, NE, USA.,Center for Biomechanical Rehabilitation and Manufacturing, University of Nebraska at Omaha, Omaha, NE, USA
| | - Kaitlin Fraser
- Department of Biomechanics 1, University of Nebraska at Omaha, Omaha, NE, USA
| | | | - Jorge M Zuniga
- Department of Biomechanics 1, University of Nebraska at Omaha, Omaha, NE, USA. .,Center for Biomechanical Rehabilitation and Manufacturing, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
4
|
Zhang J, Shi P, Du J, Yu H. A study based on functional near-infrared spectroscopy: Cortical responses to music interventions in patients with myofascial pain syndrome. Front Hum Neurosci 2023; 17:1119098. [PMID: 36778036 PMCID: PMC9911431 DOI: 10.3389/fnhum.2023.1119098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Object This study measured cerebral blood oxygen changes in patients with myofascial pain syndrome (MPS) using functional near-infrared spectroscopy (fNIRS). The aim was to investigate the effect of music intervention on pain relief in MPS patients. Materials and methods A total of 15 patients with MPS participated in this study. A self-controlled block task design was used to collect the oxy-hemoglobin ([HbO2]) and deoxy-hemoglobin ([HbR]) concentrations in the prefrontal cortex (PFC) and motor cortex using fNIRS. The cerebral cortex response and channel connectivity were further analyzed. In the experiment, the therapist was asked to apply compression of 3-4 kg/cm2 vertically using the thumb to induce pain. Soothing synthetic music with frequencies of 8-150 Hz and 50-70 dB was used as the audio for the music intervention. Result Compared to the group without music intervention, the activation of brain regions showed a decreasing trend in the group with music intervention under the onset of pain. The results of paired t-tests showed that nine of the data were significantly different (p < 0.05). It was also found that with music intervention, inter-channel connectivity was diminished. Besides, their dorsolateral prefrontal cortex (dlPFC) was significantly correlated with the anterior prefrontal cortex (aPFC) for pain response (r = 0.82), and weakly correlated with the premotor cortex (r = 0.40). Conclusion This study combines objective assessment indicators and subjective scale assessments to demonstrate that appropriate music interventions can be effective in helping to relieve pain to some extent. The analgesic mechanisms between relevant brain regions under music intervention were explored in depth. New insights into effective analgesic methods and quantitative assessment of pain conditions are presented.
Collapse
Affiliation(s)
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | | | | |
Collapse
|
5
|
Cerebral Hemodynamic Changes during Unaffected Handgrip Exercises in Stroke Patients: An fNIRS Study. Brain Sci 2023; 13:brainsci13010141. [PMID: 36672122 PMCID: PMC9857146 DOI: 10.3390/brainsci13010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to assess the effect of the altered strength of the sound limb on the hemodynamics in the affected brain of stroke patients. We recruited 20 stroke patients to detect changes in the HbO concentrations in the bilateral prefrontal cortex (PFC), sensorimotor cortex (SMC), and occipital lobe (OL). We performed functional near-infrared spectroscopy (fNIRS) to detect changes in oxyhemoglobin (HbO) concentrations in regions of interest (ROIs) in the bilateral cerebral hemispheres of stroke patients while they performed 20%, 50%, and 80% maximal voluntary contraction (MVC) levels of handgrip tasks with the unaffected hands. The results suggest that when patients performed handgrip tasks with 50% of the MVC force, SMC in the affected cerebral hemisphere was strongly activated and the change in the HbO concentration was similar to that of the handgrip with 80% of MVC. When the force was 50% of MVC, the SMC in the affected hemisphere showed a more proportional activation than that at 80% MVC. Overall, this research suggests that stroke patients with a poor upper limb function should perform motor training with their sound hands at 50% of the MVC grip task to activate the ipsilesional hemisphere.
Collapse
|
6
|
Bunketorp Käll L, Björnsdotter M, Wangdell J, Reinholdt C, Cooper R, Skau S. Feasibility of using fNIRS to explore motor-related regional haemodynamic signal changes in patients with sensorimotor impairment and healthy controls: A pilot study. Restor Neurol Neurosci 2023; 41:91-101. [PMID: 37458052 PMCID: PMC10741372 DOI: 10.3233/rnn-221292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND While functional near-infrared spectroscopy (fNIRS) can provide insight into cortical brain activity during motor tasks in healthy and diseased populations, the feasibility of using fNIRS to assess haemoglobin-evoked responses to reanimated upper limb motor function in patients with tetraplegia remains unknown. OBJECTIVE The primary objective of this pilot study is to determine the feasibility of using fNIRS to assess cortical signal intensity changes during upper limb motor tasks in individuals with surgically restored grip functions. The secondary objectives are: 1) to collect pilot data on individuals with tetraplegia to determine any trends in the cortical signal intensity changes as measured by fNIRS and 2) to compare cortical signal intensity changes in affected individuals versus age-appropriate healthy volunteers. Specifically, patients presented with tetraplegia, a type of paralysis resulting from a cervical spinal cord injury causing loss of movement and sensation in both lower and upper limbs. All patients have their grip functions restored by surgical tendon transfer, a procedure which constitutes a unique, focused stimulus for brain plasticity. METHOD fNIRS is used to assess changes in cortical signal intensity during the performance of two motor tasks (isometric elbow and thumb flexion). Six individuals with tetraplegia and six healthy controls participate in the study. A block paradigm is utilized to assess contralateral and ipsilateral haemodynamic responses in the premotor cortex (PMC) and primary motor cortex (M1). We assess the amplitude of the optical signal and spatial features during the paradigms. The accuracy of channel locations is maximized through 3D digitizations of channel locations and co-registering these locations to template atlas brains. A general linear model approach, with short-separation regression, is used to extract haemodynamic response functions at the individual and group levels. RESULTS Peak oxyhaemoglobin (oxy-Hb) changes in PMC appear to be particularly bilateral in nature in the tetraplegia group during both pinch and elbow trials whereas for controls, a bilateral PMC response is not especially evident. In M1 / primary sensory cortex (S1), the oxy-Hb responses to the pinch task are mainly contralateral in both groups, while for the elbow flexion task, lateralization is not particularly clear. CONCLUSIONS This pilot study shows that the experimental setup is feasible for assessing brain activation using fNIRS during volitional upper limb motor tasks in individuals with surgically restored grip functions. Cortical signal changes in brain regions associated with upper extremity sensorimotor processing appear to be larger and more bilateral in nature in the tetraplegia group than in the control group. The bilateral hemispheric response in the tetraplegia group may reflect a signature of adaptive brain plasticity mechanisms. Larger studies than this one are needed to confirm these findings and draw reliable conclusions.
Collapse
Affiliation(s)
- Lina Bunketorp Käll
- Center for Advanced Reconstruction of Extremities (C.A.R.E.), Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Björnsdotter
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Wangdell
- Center for Advanced Reconstruction of Extremities (C.A.R.E.), Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Hand Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Reinholdt
- Center for Advanced Reconstruction of Extremities (C.A.R.E.), Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Hand Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Cooper
- Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, University College London, UK
| | - Simon Skau
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Du Q, Luo J, Cheng Q, Wang Y, Guo S. Vibrotactile enhancement in hand rehabilitation has a reinforcing effect on sensorimotor brain activities. Front Neurosci 2022; 16:935827. [PMID: 36267238 PMCID: PMC9577243 DOI: 10.3389/fnins.2022.935827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Stroke patients often suffer from hand dysfunction or loss of tactile perception, which in turn interferes with hand rehabilitation. Tactile-enhanced multi-sensory feedback rehabilitation is an approach worth considering, but its effectiveness has not been well studied. By using functional near-infrared spectroscopy (fNIRS) to analyze the causal activity patterns in the sensorimotor cortex, the present study aims to investigate the cortical hemodynamic effects of hand rehabilitation training when tactile stimulation is applied, and to provide a basis for rehabilitation program development. Methods A vibrotactile enhanced pneumatically actuated hand rehabilitation device was tested on the less-preferred hand of 14 healthy right-handed subjects. The training tasks consisted of move hand and observe video (MO), move hand and vibration stimulation (MV), move hand, observe video, and vibration stimulation (MOV), and a contrast resting task. Region of interest (ROI), a laterality index (LI), and causal brain network analysis methods were used to explore the brain’s cortical blood flow response to a multi-sensory feedback rehabilitation task from multiple perspectives. Results (1) A more pronounced contralateral activation in the right-brain region occurred under the MOV stimulation. Rehabilitation tasks containing vibrotactile enhancement (MV and MOV) had significantly more oxyhemoglobin than the MO task at 5 s after the task starts, indicating faster contralateral activation in sensorimotor brain regions. (2) Five significant lateralized channel connections were generated under the MV and MOV tasks (p < 0.05), one significant lateralized channel connection was generated by the MO task, and the Rest were not, showing that MV and MOV caused stronger lateralization activation. (3) We investigated all thresholds of granger causality (GC) resulting in consistent relative numbers of effect connections. MV elicited stronger causal interactions between the left and right cerebral hemispheres, and at the GC threshold of 0.4, there were 13 causal network connection pairs for MV, 7 for MO, and 9 for MOV. Conclusion Vibrotactile cutaneous stimulation as a tactile enhancement can produce a stronger stimulation of the brain’s sensorimotor brain areas, promoting the establishment of neural pathways, and causing a richer effect between the left and right cerebral hemispheres. The combination of kinesthetic, vibrotactile, and visual stimulation can achieve a more prominent training efficiency from the perspective of functional cerebral hemodynamics.
Collapse
Affiliation(s)
- Qiang Du
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
| | - Jingjing Luo
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
- Jihua Laboratory, Foshan, China
- *Correspondence: Jingjing Luo,
| | - Qiying Cheng
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
| | - Youhao Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
| | - Shijie Guo
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI and Robotics, Shanghai, China
- Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai, China
- Department of the State Key Laboratory of Reliability and Intelligence of Electrical Equipment and the Hebei Key Laboratory of Robot Perception and Human-Robot Interaction, Hebei University of Technology, Tianjin, China
- Shijie Guo,
| |
Collapse
|
8
|
Mansour S, Giles J, Ang KK, Nair KPS, Phua KS, Arvaneh M. Exploring the ability of stroke survivors in using the contralesional hemisphere to control a brain-computer interface. Sci Rep 2022; 12:16223. [PMID: 36171400 PMCID: PMC9519575 DOI: 10.1038/s41598-022-20345-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Brain-computer interfaces (BCIs) have recently been shown to be clinically effective as a novel method of stroke rehabilitation. In many BCI-based studies, the activation of the ipsilesional hemisphere was considered a key factor required for motor recovery after stroke. However, emerging evidence suggests that the contralesional hemisphere also plays a role in motor function rehabilitation. The objective of this study is to investigate the effectiveness of the BCI in detecting motor imagery of the affected hand from contralesional hemisphere. We analyzed a large EEG dataset from 136 stroke patients who performed motor imagery of their stroke-impaired hand. BCI features were extracted from channels covering either the ipsilesional, contralesional or bilateral hemisphere, and the offline BCI accuracy was computed using 10 [Formula: see text] 10-fold cross-validations. Our results showed that most stroke patients can operate the BCI using either their contralesional or ipsilesional hemisphere. Those with the ipsilesional BCI accuracy of less than 60% had significantly higher motor impairments than those with the ipsilesional BCI accuracy above 80%. Interestingly, those with the ipsilesional BCI accuracy of less than 60% achieved a significantly higher contralesional BCI accuracy, whereas those with the ipsilesional BCI accuracy more than 80% had significantly poorer contralesional BCI accuracy. This study suggests that contralesional BCI may be a useful approach for those with a high motor impairment who cannot accurately generate signals from ipsilesional hemisphere to effectively operate BCI.
Collapse
Affiliation(s)
- Salem Mansour
- Department of Automatic Control and Systems Engineering, University of Sheffield, Mapping Street, Sheffield, S13JD, UK.
| | - Joshua Giles
- Department of Automatic Control and Systems Engineering, University of Sheffield, Mapping Street, Sheffield, S13JD, UK
- Agency for Science Technology and Research, Institute for Infocomm Research, Singapore, Singapore
| | - Kai Keng Ang
- Agency for Science Technology and Research, Institute for Infocomm Research, Singapore, Singapore
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Krishnan P S Nair
- Neurology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust and The University of Sheffield, Sheffield, UK
| | - Kok Soon Phua
- Agency for Science Technology and Research, Institute for Infocomm Research, Singapore, Singapore
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of Sheffield, Mapping Street, Sheffield, S13JD, UK
| |
Collapse
|
9
|
Xia W, Dai R, Xu X, Huai B, Bai Z, Zhang J, Jin M, Niu W. Cortical mapping of active and passive upper limb training in stroke patients and healthy people: A functional near-infrared spectroscopy study. Brain Res 2022; 1788:147935. [DOI: 10.1016/j.brainres.2022.147935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
|
10
|
Dans PW, Foglia SD, Nelson AJ. Data Processing in Functional Near-Infrared Spectroscopy (fNIRS) Motor Control Research. Brain Sci 2021; 11:606. [PMID: 34065136 PMCID: PMC8151801 DOI: 10.3390/brainsci11050606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
FNIRS pre-processing and processing methodologies are very important-how a researcher chooses to process their data can change the outcome of an experiment. The purpose of this review is to provide a guide on fNIRS pre-processing and processing techniques pertinent to the field of human motor control research. One hundred and twenty-three articles were selected from the motor control field and were examined on the basis of their fNIRS pre-processing and processing methodologies. Information was gathered about the most frequently used techniques in the field, which included frequency cutoff filters, wavelet filters, smoothing filters, and the general linear model (GLM). We discuss the methodologies of and considerations for these frequently used techniques, as well as those for some alternative techniques. Additionally, general considerations for processing are discussed.
Collapse
Affiliation(s)
- Patrick W. Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
11
|
Valdés BA, Lajoie K, Marigold DS, Menon C. Cortical Effects of Noisy Galvanic Vestibular Stimulation Using Functional Near-Infrared Spectroscopy. SENSORS 2021; 21:s21041476. [PMID: 33672519 PMCID: PMC7923808 DOI: 10.3390/s21041476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Noisy galvanic vestibular stimulation (nGVS) can improve different motor, sensory, and cognitive behaviors. However, it is unclear how this stimulation affects brain activity to facilitate these improvements. Functional near-infrared spectroscopy (fNIRS) is inexpensive, portable, and less prone to motion artifacts than other neuroimaging technology. Thus, fNIRS has the potential to provide insight into how nGVS affects cortical activity during a variety of natural behaviors. Here we sought to: (1) determine if fNIRS can detect cortical changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin with application of subthreshold nGVS, and (2) determine how subthreshold nGVS affects this fNIRS-derived hemodynamic response. A total of twelve healthy participants received nGVS and sham stimulation during a seated, resting-state paradigm. To determine whether nGVS altered activity in select cortical regions of interest (BA40, BA39), we compared differences between nGVS and sham HbO and HbR concentrations. We found a greater HbR response during nGVS compared to sham stimulation in left BA40, a region previously associated with vestibular processing, and with all left hemisphere channels combined (p < 0.05). We did not detect differences in HbO responses for any region during nGVS (p > 0.05). Our results suggest that fNIRS may be suitable for understanding the cortical effects of nGVS.
Collapse
Affiliation(s)
- Bulmaro A. Valdés
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
| | - Kim Lajoie
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
| | - Daniel S. Marigold
- Sensorimotor Neuroscience Lab, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada;
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008 Zurich, Switzerland
- Correspondence:
| |
Collapse
|