1
|
Ighalo J, Kirby ED, Song X, Fickling SD, Pawlowski G, Hajra SG, Liu CC, Menon C, Shah SA, Knoefel F, D'Arcy RC. Brain vital signs as a quantitative measure of cognition: Methodological implementation in a care home environment. Heliyon 2024; 10:e28982. [PMID: 38576563 PMCID: PMC10990968 DOI: 10.1016/j.heliyon.2024.e28982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Managing cognitive function in care homes is a significant challenge. Individuals in care have a variety of scores across standard clinical assessments, such as the Mini-Mental Status Exam (MMSE), and many of them have scores that fall within the range associated with dementia. A recent methodological advance, brain vital sign monitoring through auditory event-related potentials, provides an objective and sensitive physiological measurement to track abnormalities, differences, or changes in cognitive function. Taking advantage of point-of-care accessibility, the current study evaluated the methodological feasibility, the assessment of whether a particular research method can be successfully implemented, of quantitatively measuring cognition of care home residents using brain vital signs. Secondarily, the current study examined the relationship between brain vital signs, specifically the cognitive processing associated N400 component, and MMSE scores in care home residents. Materials and methods Brain vital signs used the established N100 (auditory sensation), P300 (basic attention), and N400 (cognitive processing) event-related potential (ERP) components. A total of 52 residents were enrolled, with all participants evaluated using the MMSE. Participants were assigned into homogeneous groups based on their MMSE scores, and were categorized into low (n = 14), medium (n = 17), and high (n = 13) MMSE groups. Both brain vital sign measures and underlying ERP waveforms were examined. Statistical analyses used partial least squares correlation (PLS) analyses in which both MMSE and age were included as factors, as well as jackknife approaches, to test for significant brain vital sign changes. Results The current study successfully measured and analyzed standardized, quantifiable brain vital signs in a care home setting. ERP waveform data showed specific N400 changes between MMSE groups as a function of MMSE score. PLS analyses confirmed significant MMSE-related and age-related differences in the N400 amplitude (p < 0.05, corrected). Similarly, the jackknife approach emphasized the N400 latency difference between the low and high MMSE groups. Discussion and conclusion It was possible to acquire brain vital signs measures in care home residents. Additionally, the current study evaluated brain vital signs relative to MMSE in this group. The comparison revealed significant decreasing in N400 response amplitude (cognitive processing) as a function of both MMSE score and age, as well as a slowing of N400 latency. The findings indicate that objective neurophysiological measures of impairment are detectable in care home residents across the span of MMSE scores. Direct comparison to MMSE- and age-related variables represents a critical initial step ahead of future studies that will investigate relative improvements in sensitivity, validity, reliability and related advantages of brain vital sign monitoring.
Collapse
Affiliation(s)
- Joshua Ighalo
- Simon Fraser University, Faculty of Sciences and Applied Sciences, Metro-Vancouver, Canada
- Health and Technology District, BrainNET, Metro-Vancouver, Canada
| | - Eric D. Kirby
- Simon Fraser University, Faculty of Sciences and Applied Sciences, Metro-Vancouver, Canada
- Health and Technology District, BrainNET, Metro-Vancouver, Canada
| | - Xiaowei Song
- Simon Fraser University, Faculty of Sciences and Applied Sciences, Metro-Vancouver, Canada
- Fraser Health, Surrey Memorial Hospital and Royal Columbian Hospital, Metro-Vancouver, Canada
| | - Shaun D. Fickling
- HealthTech Connex, Centre for Neurology Studies, Metro-Vancouver, Canada
| | - Gabriela Pawlowski
- Simon Fraser University, Faculty of Sciences and Applied Sciences, Metro-Vancouver, Canada
- Health and Technology District, BrainNET, Metro-Vancouver, Canada
| | - Sujoy Ghosh Hajra
- Simon Fraser University, Faculty of Sciences and Applied Sciences, Metro-Vancouver, Canada
- Florida Institute of Technology, College of Engineering and Sciences, Melbourne, FL, USA
| | - Careesa C. Liu
- Simon Fraser University, Faculty of Sciences and Applied Sciences, Metro-Vancouver, Canada
- Florida Institute of Technology, College of Engineering and Sciences, Melbourne, FL, USA
| | - Carlo Menon
- Simon Fraser University, Faculty of Sciences and Applied Sciences, Metro-Vancouver, Canada
- ETH Zurich, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Sudhin A. Shah
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Frank Knoefel
- Bruyere Research Institute, Bruyere Memory Program, Ottawa, Canada
- University of Ottawa, Faculty of Medicine, Ottawa, Canada
- Carleton University, Faculty of Engineering and Design, Ottawa, Canada
| | - Ryan C.N. D'Arcy
- Simon Fraser University, Faculty of Sciences and Applied Sciences, Metro-Vancouver, Canada
- Health and Technology District, BrainNET, Metro-Vancouver, Canada
- Fraser Health, Surrey Memorial Hospital and Royal Columbian Hospital, Metro-Vancouver, Canada
- University of British Columbia, DM Centre for Brain Health, Metro-Vancouver, Canada
| |
Collapse
|
2
|
Vizza P, Marotta N, Ammendolia A, Guzzi PH, Veltri P, Tradigo G. REHABS: An Innovative and User-Friendly Device for Rehabilitation. Bioengineering (Basel) 2023; 11:5. [PMID: 38275573 PMCID: PMC11154369 DOI: 10.3390/bioengineering11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Rehabilitation is a complex set of interventions involving the assessment, management, and treatment of injuries. It aims to support and facilitate an individual's recovery process by restoring a physiological function, e.g., limb movement, compromised by physical impairments, injuries or diseases to a condition as close to normal as possible. Innovative devices and solutions make the rehabilitation process of patients easier during their daily activities. Devices support physicians and physiotherapists in monitoring and measuring patients' physical improvements during rehabilitation. In this context, we report the design and implementation of a low-cost rehabilitation system, which is a programmable device designed to support tele-rehabilitation of the upper limbs. The proposed system includes a mechanism to acquire and analyze data and signals related to rehabilitation processes.
Collapse
Affiliation(s)
- Patrizia Vizza
- Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (A.A.); (P.H.G.)
| | - Nicola Marotta
- Department of Clinical and Experimental Medicine, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy;
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (A.A.); (P.H.G.)
| | - Pietro Hiram Guzzi
- Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (A.A.); (P.H.G.)
| | | | - Giuseppe Tradigo
- Department of Theoretical and Applied Sciences, University e-Campus, 22060 Novedrate, Italy;
| |
Collapse
|
3
|
Kirby ED, Jones CB, Fickling SD, Pawlowski G, Brodie SM, Boyd LA, Venter J, Moser N, Kalsi-Ryan S, Medvedev G, D’Arcy RCN. Real world evidence of improved attention and cognition during physical therapy paired with neuromodulation: a brain vital signs study. Front Hum Neurosci 2023; 17:1209480. [PMID: 37362950 PMCID: PMC10289164 DOI: 10.3389/fnhum.2023.1209480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background Non-invasive neuromodulation using translingual neurostimulation (TLNS) has been shown to advance rehabilitation outcomes, particularly when paired with physical therapy (PT). Together with motor gains, patient-reported observations of incidental improvements in cognitive function have been noted. Both studies in healthy individuals and case reports in clinical populations have linked TLNS to improvements in attention-related cognitive processes. We investigated if the use of combined TLNS/PT would translate to changes in objective neurophysiological cognitive measures in a real-world clinical sample of patients from two separate rehabilitation clinics. Methods Brain vital signs were derived from event-related potentials (ERPs), specifically auditory sensation (N100), basic attention (P300), and cognitive processing (N400). Additional analyses explored the attention-related N200 response given prior evidence of attention effects from TLNS/PT. The real-world patient sample included a diverse clinical group spanning from mild-to-moderate traumatic brain injury (TBI), stroke, Multiple Sclerosis (MS), Parkinson's Disease (PD), and other neurological conditions. Patient data were also acquired from a standard clinical measure of cognition for comparison. Results Results showed significant N100 variation between baseline and endpoint following TLNS/PT treatment, with further examination showing condition-specific significant improvements in attention processing (i.e., N100 and N200). Additionally, CogBAT composite scores increased significantly from baseline to endpoint. Discussion The current study highlighted real-world neuromodulation improvements in neurophysiological correlates of attention. Overall, the real-world findings support the concept of neuromodulation-related improvements extending beyond physical therapy to include potential attention benefits for cognitive rehabilitation.
Collapse
Affiliation(s)
- Eric D. Kirby
- BrainNet, Faculty of Applied Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Christina B. Jones
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun D. Fickling
- BrainNet, Faculty of Applied Sciences, Simon Fraser University, Vancouver, BC, Canada
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
| | | | - Sonia M. Brodie
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
| | - Lara A. Boyd
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Jan Venter
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
- Healthcode, Vancouver, BC, Canada
| | - Nicholas Moser
- KITE Research Institute-UHN, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute-UHN, Toronto, ON, Canada
- Department of Physical Therapy, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - George Medvedev
- Royal Columbian Hospital, Fraser Health, Vancouver, BC, Canada
| | - Ryan C. N. D’Arcy
- BrainNet, Faculty of Applied Sciences, Simon Fraser University, Vancouver, BC, Canada
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
- DM Centre for Brain Health, Department of Radiology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Diaz MJ, Root KT, Beneke A, Penev Y, Lucke-Wold B. Neurostimulation for Traumatic Brain Injury: Emerging Innovation. OBM NEUROBIOLOGY 2023; 7:161. [PMID: 36938307 PMCID: PMC10019379 DOI: 10.21926/obm.neurobiol.2301161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Traumatic brain injury (TBI) is a significant source of brain deficit and death among neurosurgical patients, with limited prospects for functional recovery in the cases of moderate-to-severe injury. Until now, the relevant body of literature on TBI intervention has focused on first-line, invasive treatment options (namely craniectomy and hematoma evacuation) with underwhelming focus on non-invasive therapies following surgical stabilization. Recent advances in our understanding of the impaired brain have encouraged deeper investigation of neurostimulation strategies, owed largely to its demonstrated livening of damaged neural circuitry and capacity to stabilize erratic network activity. The objective of the present study is to provide a scoping review of new knowledge in neurostimulation published in the PubMed, Scopus, and Google Scholar databases from inception to November 2022. We critically assess and appraise the available data on primary neurostimulation delivery techniques, with marked emphasis on restorative opportunities for accessory neurostimulation in the interdisciplinary care of moderate-to-severe TBI (msTBI) patients. These data identify two primary future directions: 1) to relate obtained gain-of-function outcomes to hemodynamic and histological changes and 2) to develop a clearer understanding of neurostimulation efficacy, when combined with pharmacologic interventions or other modulatory techniques, for complex brain insult.
Collapse
Affiliation(s)
| | | | - Alice Beneke
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yordan Penev
- College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
5
|
Babov KD, Zabolotna IB, Plakida AL, Volyanska VS, Babova IK, Gushcha SG, Kolker IA. The effectiveness of high-tone therapy in the complex rehabilitation of servicemen with post-traumatic stress disorder complicated by traumatic brain injury. Neurol Sci 2023; 44:1039-1048. [PMID: 36417014 DOI: 10.1007/s10072-022-06510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION As a result of local military conflicts that have become more frequent over the past decades, the number of military personnel subjected to combat stress has sharply increased. More than 50% of them suffer from combat posttraumatic stress disorder. The most common comorbidity in this category of patients is a traumatic brain injury. Due to the undesirability of the long-term use of pharmacological agents, for rehabilitation, preference should be given to physiotherapeutic procedures. OBJECTS AND METHODS We examined 50 patients with post-traumatic stress disorder in combination with a closed craniocerebral injury. Group 1-25 patients received standard complex treatment at the sanatoriumresort rehabilitation stage (diet therapy, climatotherapy, balneotherapy, exercise therapy, psychotherapy). Group 2-25 patients, in addition to the standard complex treatment, received a course of high-tone therapy. RESULTS Complex rehabilitation of patients with the use of high-tone therapy contributes to a significant decrease in astheno-neurotic (p < 0.05) and asthenic depressive (p < 0.01) syndromes and has a psycho-relaxing effect on anxiety syndrome (p < 0.01). There was also a decrease in the severity of pyramidal symptoms and regression of the vestibulo-atactic syndrome (p < 0.05). The course application of hightone therapy was accompanied by a significant restoration of the elastotonic properties of the vascular wall and an improvement in cerebral perfusion (p < 0.05). Positive dynamics of electrophysiological indicators were noted: a decrease in the intensity of slow rhythms against the background of an increase in the frequency and intensity of the alpha rhythm in both hemispheres (p < 0.05), which indicates the harmonization of the bioelectrical activity of the brain.
Collapse
Affiliation(s)
- Kostyantyn D Babov
- State Institution "Ukrainian Research Institute of Medical Rehabilitation Therapy of Ministry of Health of Ukraine", Odessa, 65014, Ukraine
| | - Iryna B Zabolotna
- State Institution "Ukrainian Research Institute of Medical Rehabilitation Therapy of Ministry of Health of Ukraine", Odessa, 65014, Ukraine
| | - Alexander L Plakida
- State Institution "Ukrainian Research Institute of Medical Rehabilitation Therapy of Ministry of Health of Ukraine", Odessa, 65014, Ukraine.
| | | | - Iryna K Babova
- State Institution "South Ukrainian National Pedagogical University Named After K.D. Ushynsky", Odessa, 65020, Ukraine
| | - Sergey G Gushcha
- State Institution "Ukrainian Research Institute of Medical Rehabilitation Therapy of Ministry of Health of Ukraine", Odessa, 65014, Ukraine
| | - Iryna A Kolker
- Odessa National Medical University, Odessa, 65000, Ukraine
| |
Collapse
|
6
|
Frizzell TO, Phull E, Khan M, Song X, Grajauskas LA, Gawryluk J, D'Arcy RCN. Imaging functional neuroplasticity in human white matter tracts. Brain Struct Funct 2022; 227:381-392. [PMID: 34812936 PMCID: PMC8741691 DOI: 10.1007/s00429-021-02407-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022]
Abstract
Magnetic resonance imaging (MRI) studies are sensitive to biological mechanisms of neuroplasticity in white matter (WM). In particular, diffusion tensor imaging (DTI) has been used to investigate structural changes. Historically, functional MRI (fMRI) neuroplasticity studies have been restricted to gray matter, as fMRI studies have only recently expanded to WM. The current study evaluated WM neuroplasticity pre-post motor training in healthy adults, focusing on motor learning in the non-dominant hand. Neuroplasticity changes were evaluated in two established WM regions-of-interest: the internal capsule and the corpus callosum. Behavioral improvements following training were greater for the non-dominant hand, which corresponded with MRI-based neuroplasticity changes in the internal capsule for DTI fractional anisotropy, fMRI hemodynamic response functions, and low-frequency oscillations (LFOs). In the corpus callosum, MRI-based neuroplasticity changes were detected in LFOs, DTI, and functional correlation tensors (FCT). Taken together, the LFO results converged as significant amplitude reductions, implicating a common underlying mechanism of optimized transmission through altered myelination. The structural and functional neuroplasticity findings open new avenues for direct WM investigations into mapping connectomes and advancing MRI clinical applications.
Collapse
Affiliation(s)
- Tory O Frizzell
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
| | - Elisha Phull
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
| | - Mishaa Khan
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
| | - Xiaowei Song
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
- Health Sciences and Innovation, Surrey Memorial Hospital, Surrey, BC, Canada
| | - Lukas A Grajauskas
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jodie Gawryluk
- Division of Medical Sciences, Department of Psychology, University of Victoria, Victoria, BC, Canada
- DM Centre for Brain Health (Radiology), University of British Columbia, Vancouver, BC, Canada
| | - Ryan C N D'Arcy
- BrainNET, Health and Technology District, Surrey, BC, Canada.
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada.
- Health Sciences and Innovation, Surrey Memorial Hospital, Surrey, BC, Canada.
- DM Centre for Brain Health (Radiology), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
D'Arcy RCN, Sandhu JK, Marshall S, Besemann M. Mitigating Long-Term COVID-19 Consequences on Brain Health. Front Neurol 2021; 12:630986. [PMID: 34646224 PMCID: PMC8502890 DOI: 10.3389/fneur.2021.630986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is increasingly being linked to brain health impacts. The emerging situation is consistent with evidence of immunological injury to the brain, which has been described as a resulting "brain fog." The situation need not be medicalized but rather clinically managed in terms of improving resilience for an over-stressed nervous system. Pre-existing comparisons include managing post-concussion syndromes and/or brain fog. The objective evaluation of changes in cognitive functioning will be an important clinical starting point, which is being accelerated through pandemic digital health innovations. Pre-morbid brain health can significantly optimize risk factors and existing clinical frameworks provide useful guidance in managing over-stressed COVID-19 nervous systems.
Collapse
Affiliation(s)
- Ryan C N D'Arcy
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Vancouver, BC, Canada.,DM Centre for Brain Health (Radiology), University of British Columbia, Vancouver, BC, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Shawn Marshall
- Physical Medicine and Rehabilitation, University of Ottawa, Ottawa, ON, Canada
| | - Markus Besemann
- Physical Medicine and Rehabilitation, University of Ottawa, Ottawa, ON, Canada.,Rehabilitation Medicine, Canadian Forces Health Services, Ottawa, ON, Canada
| |
Collapse
|
8
|
Carrick FR, Pagnacco G, Azzolino SF, Hunfalvay M, Oggero E, Frizzell T, Smith CJ, Pawlowski G, Campbell NKJ, Fickling SD, Lakhani B, D'Arcy RCN. Brain Vital Signs in Elite Ice Hockey: Towards Characterizing Objective and Specific Neurophysiological Reference Values for Concussion Management. Front Neurosci 2021; 15:670563. [PMID: 34434084 PMCID: PMC8382572 DOI: 10.3389/fnins.2021.670563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Prior concussion studies have shown that objective neurophysiological measures are sensitive to detecting concussive and subconcussive impairments in youth ice-hockey. These studies monitored brain vital signs at rink-side using a within-subjects design to demonstrate significant changes from pre-season baseline scans. However, practical clinical implementation must overcome inherent challenges related to any dependence on a baseline. This requires establishing the start of normative reference data sets. Methods: The current study collected specific reference data for N = 58 elite, youth, male ice-hockey players and compared these with a general reference dataset from N = 135 of males and females across the lifespan. The elite hockey players were recruited to a select training camp through CAA Hockey, a management agency for players drafted to leagues such as the National Hockey League (NHL). The statistical analysis included a test-retest comparison to establish reliability, and a multivariate analysis of covariance to evaluate differences in brain vital signs between groups with age as a covariate. Findings: Test-retest assessments for brain vital signs evoked potentials showed moderate-to-good reliability (Cronbach’s Alpha > 0.7, Intraclass correlation coefficient > 0.5) in five out of six measures. The multivariate analysis of covariance showed no overall effect for group (p = 0.105), and a significant effect of age as a covariate was observed (p < 0.001). Adjusting for the effect of age, a significant difference was observed in the measure of N100 latency (p = 0.022) between elite hockey players and the heterogeneous control group. Interpretation: The findings support the concept that normative physiological data can be used in brain vital signs evaluation in athletes, and should additionally be stratified for age, skill level, and experience. These can be combined with general norms and/or individual baseline assessments where appropriate and/or possible. The current results allow for brain vital sign evaluation independent of baseline assessment, therefore enabling objective neurophysiological evaluation of concussion management and cognitive performance optimization in ice-hockey.
Collapse
Affiliation(s)
- Frederick R Carrick
- University of Central Florida College of Medicine, Orlando, FL, United States.,MGH Institute of Health Professions, Boston, MA, United States.,Centre for Mental Health Research, University of Cambridge, Cambridge, United Kingdom.,Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom
| | - Guido Pagnacco
- Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom.,Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY, United States
| | - Sergio F Azzolino
- Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom
| | - Melissa Hunfalvay
- Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom
| | - Elena Oggero
- Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom.,Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY, United States
| | - Tory Frizzell
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | | | - Gabriela Pawlowski
- BrainNET, Health and Technology District, Vancouver, BC, Canada.,Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
| | - Natasha K J Campbell
- BrainNET, Health and Technology District, Vancouver, BC, Canada.,Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
| | - Shaun D Fickling
- BrainNET, Health and Technology District, Vancouver, BC, Canada.,Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
| | - Bimal Lakhani
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada
| | - Ryan C N D'Arcy
- BrainNET, Health and Technology District, Vancouver, BC, Canada.,Centre for Neurology Studies, HealthTech Connex, Vancouver, BC, Canada.,DM Centre for Brain Health, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Boughen K, Neil T, Dullemond S, Lutowicz K, Bilgasem A, Hastings T, Brooks D, Vaughan-Graham J. Cranial Nerve Noninvasive Neuromodulation in Adults With Neurological Conditions: Protocol for a Scoping Review. JMIR Res Protoc 2021; 10:e29965. [PMID: 34319251 PMCID: PMC8367107 DOI: 10.2196/29965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cranial nerve noninvasive neuromodulation (CN-NINM) via translingual nerve stimulation (TLNS) is a promising new intervention combined with neurological rehabilitation to improve outcomes for persons with neurological conditions. A portable neuromodulation stimulation (PoNS) device rests on the tongue and stimulates cranial nerves V and VII (trigeminal and facial nerves, respectively). Emerging evidence suggests that CN-NINM using the PoNS device, combined with targeted physical therapy, improves balance and gait outcomes but has not yet been comprehensively reviewed. OBJECTIVE This review will describe CN-NINM via TLNS and its applications, effects, and implications for rehabilitation science in adult populations with neurological conditions. We will identify how CN-NINM via TLNS is currently being incorporated into neurological rehabilitation and identify gaps in evidence with respect to this novel technology. METHODS Joanna Briggs Institute methodology will be used to conduct this scoping review. Electronic databases MEDLINE, AMED, CINAHL, Embase, and Web of Science will be searched, as well as gray literature databases ProQuest, DuckDuckGo, and Google. Studies published in English and French between 2000 and 2021 will be included. Two reviewers will independently screen all titles and abstracts and full-text papers that meet the inclusion criteria. Data will be extracted and collated in a table to synthesize the results. Extracted data will be reported in a comprehensive summary. RESULTS The final manuscript is intended for submission to an indexed journal in September 2021. CONCLUSIONS This scoping review will be the first, to our knowledge, to address the current evidence on CN-NINM. The results will inform the use of CN-NINM in neurological rehabilitation and the development of recommendations for future research. TRIAL REGISTRATION Open Science Framework 10.17605/OSF.IO/XZQFM; https://osf.io/xzqfm. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/29965.
Collapse
Affiliation(s)
- Keaton Boughen
- Physiotherapy Program, School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Tyler Neil
- Physiotherapy Program, School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Shayan Dullemond
- Physiotherapy Program, School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kevin Lutowicz
- Physiotherapy Program, School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Ahmed Bilgasem
- Physiotherapy Program, School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Tyler Hastings
- Physiotherapy Program, School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Dina Brooks
- Physiotherapy Program, School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Julie Vaughan-Graham
- Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|