1
|
Lin J, Smith GC, Gliske SV, Zochowski M, Shedden K, Stacey WC. High frequency oscillation network dynamics predict outcome in non-palliative epilepsy surgery. Brain Commun 2024; 6:fcae032. [PMID: 38384998 PMCID: PMC10881100 DOI: 10.1093/braincomms/fcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
High frequency oscillations are a promising biomarker of outcome in intractable epilepsy. Prior high frequency oscillation work focused on counting high frequency oscillations on individual channels, and it is still unclear how to translate those results into clinical care. We show that high frequency oscillations arise as network discharges that have valuable properties as predictive biomarkers. Here, we develop a tool to predict patient outcome before surgical resection is performed, based on only prospective information. In addition to determining high frequency oscillation rate on every channel, we performed a correlational analysis to evaluate the functional connectivity of high frequency oscillations in 28 patients with intracranial electrodes. We found that high frequency oscillations were often not solitary events on a single channel, but part of a local network discharge. Eigenvector and outcloseness centrality were used to rank channel importance within the connectivity network, then used to compare patient outcome by comparison with the seizure onset zone or a proportion within the proposed resected channels (critical resection percentage). Combining the knowledge of each patient's seizure onset zone resection plan along with our computed high frequency oscillation network centralities and high frequency oscillation rate, we develop a Naïve Bayes model that predicts outcome (positive predictive value: 100%) better than predicting based upon fully resecting the seizure onset zone (positive predictive value: 71%). Surgical margins had a large effect on outcomes: non-palliative patients in whom most of the seizure onset zone was resected ('definitive surgery', ≥ 80% resected) had predictable outcomes, whereas palliative surgeries (<80% resected) were not predictable. These results suggest that the addition of network properties of high frequency oscillations is more accurate in predicting patient outcome than seizure onset zone alone in patients with most of the seizure onset zone removed and offer great promise for informing clinical decisions in surgery for refractory epilepsy.
Collapse
Affiliation(s)
- Jack Lin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Garnett C Smith
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen V Gliske
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michal Zochowski
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Physics and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerby Shedden
- Department of Statistics and Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - William C Stacey
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Neurology, Ann Arbor VA Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Fabo D, Bokodi V, Szabó JP, Tóth E, Salami P, Keller CJ, Hajnal B, Thesen T, Devinsky O, Doyle W, Mehta A, Madsen J, Eskandar E, Erőss L, Ulbert I, Halgren E, Cash SS. The role of superficial and deep layers in the generation of high frequency oscillations and interictal epileptiform discharges in the human cortex. Sci Rep 2023; 13:9620. [PMID: 37316509 DOI: 10.1038/s41598-022-22497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
Describing intracortical laminar organization of interictal epileptiform discharges (IED) and high frequency oscillations (HFOs), also known as ripples. Defining the frequency limits of slow and fast ripples. We recorded potential gradients with laminar multielectrode arrays (LME) for current source density (CSD) and multi-unit activity (MUA) analysis of interictal epileptiform discharges IEDs and HFOs in the neocortex and mesial temporal lobe of focal epilepsy patients. IEDs were observed in 20/29, while ripples only in 9/29 patients. Ripples were all detected within the seizure onset zone (SOZ). Compared to hippocampal HFOs, neocortical ripples proved to be longer, lower in frequency and amplitude, and presented non-uniform cycles. A subset of ripples (≈ 50%) co-occurred with IEDs, while IEDs were shown to contain variable high-frequency activity, even below HFO detection threshold. The limit between slow and fast ripples was defined at 150 Hz, while IEDs' high frequency components form clusters separated at 185 Hz. CSD analysis of IEDs and ripples revealed an alternating sink-source pair in the supragranular cortical layers, although fast ripple CSD appeared lower and engaged a wider cortical domain than slow ripples MUA analysis suggested a possible role of infragranularly located neural populations in ripple and IED generation. Laminar distribution of peak frequencies derived from HFOs and IEDs, respectively, showed that supragranular layers were dominated by slower (< 150 Hz) components. Our findings suggest that cortical slow ripples are generated primarily in upper layers while fast ripples and associated MUA in deeper layers. The dissociation of macro- and microdomains suggests that microelectrode recordings may be more selective for SOZ-linked ripples. We found a complex interplay between neural activity in the neocortical laminae during ripple and IED formation. We observed a potential leading role of cortical neurons in deeper layers, suggesting a refined utilization of LMEs in SOZ localization.
Collapse
Affiliation(s)
- Daniel Fabo
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary.
| | - Virag Bokodi
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technologies, Budapest, Hungary
| | - Johanna-Petra Szabó
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Emilia Tóth
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Department of Neurology, University of Texas, McGovern Medical School, Houston, TX, USA
| | - Pariya Salami
- Epilepsy Division, Department of Neurology, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Boglárka Hajnal
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Thomas Thesen
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Werner Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell and Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | - Emad Eskandar
- Massachusetts General Hospital Neurosurgery Research, Boston, MA, USA
| | - Lorand Erőss
- Department of Functional Neurosurgery, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Institute of Psychology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Eric Halgren
- Department of Radiology, Neurosciences and Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Sydney S Cash
- Epilepsy Division, Department of Neurology, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Sumsky S, Greenfield LJ. Network analysis of preictal iEEG reveals changes in network structure preceding seizure onset. Sci Rep 2022; 12:12526. [PMID: 35869236 PMCID: PMC9307526 DOI: 10.1038/s41598-022-16877-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Seizures likely result from aberrant network activity and synchronization. Changes in brain network connectivity may underlie seizure onset. We used a novel method of rapid network model estimation from intracranial electroencephalography (iEEG) data to characterize pre-ictal changes in network structure prior to seizure onset. We analyzed iEEG data from 20 patients from the iEEG.org database. Using 10 s epochs sliding by 1 s intervals, a multiple input, single output (MISO) state space model was estimated for each output channel and time point with all other channels as inputs, generating sequential directed network graphs of channel connectivity. These networks were assessed using degree and betweenness centrality. Both degree and betweenness increased at seizure onset zone (SOZ) channels 37.0 ± 2.8 s before seizure onset. Degree rose in all channels 8.2 ± 2.2 s prior to seizure onset, with increasing connections between the SOZ and surrounding channels. Interictal networks showed low and stable connectivity. A novel MISO model-based network estimation method identified changes in brain network structure just prior to seizure onset. Increased connectivity was initially isolated within the SOZ and spread to non-SOZ channels before electrographic seizure onset. Such models could help confirm localization of SOZ regions.
Collapse
|
4
|
Chen Z, Maturana MI, Burkitt AN, Cook MJ, Grayden DB. Seizure Forecasting by High-Frequency Activity (80-170 Hz) in Long-term Continuous Intracranial EEG Recordings. Neurology 2022; 99:e364-e375. [PMID: 35523589 DOI: 10.1212/wnl.0000000000200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Reliable seizure forecasting has important implications in epilepsy treatment and improving the quality of lives for people with epilepsy. High-frequency activity (HFA) is a biomarker that has received significant attention over the past 2 decades, but its predictive value in seizure forecasting remains uncertain. This work aimed to determine the utility of HFA in seizure forecasting. METHODS We used seizure data and HFA (80-170 Hz) data obtained from long-term, continuous intracranial EEG recordings of patients with drug-resistant epilepsy. Instantaneous rates and phases of HFA cycles were used as features for seizure forecasting. Seizure forecasts based on each individual HFA feature, and with the use of a combined approach, were generated pseudo-prospectively (causally). To compute the instantaneous phases for pseudo-prospective forecasting, real-time phase estimation based on an autoregressive model was used. Features were combined with a weighted average approach. The performance of seizure forecasting was primarily evaluated by the area under the curve (AUC). RESULTS Of 15 studied patients (median recording duration 557 days, median seizures 151), 12 patients with >10 seizures after 100 recording days were included in the pseudo-prospective analysis. The presented real-time phase estimation is feasible and can causally estimate the instantaneous phases of HFA cycles with high accuracy. Pseudo-prospective seizure forecasting based on HFA rates and phases performed significantly better than chance in 11 of 12 patients, although there were patient-specific differences. Combining rate and phase information improved forecasting performance compared to using either feature alone. The combined forecast using the best-performing channel yielded a median AUC of 0.70, a median sensitivity of 0.57, and a median specificity of 0.77. DISCUSSION These findings show that HFA could be useful for seizure forecasting and represent proof of concept for using prior information of patient-specific relationships between HFA and seizures in pseudo-prospective forecasting. Future seizure forecasting algorithms might benefit from the inclusion of HFA, and the real-time phase estimation approach can be extended to other biomarkers. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that HFA (80-170 Hz) in long-term continuous intracranial EEG can be useful to forecast seizures in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Zhuying Chen
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia.
| | - Matias I Maturana
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Anthony N Burkitt
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Mark J Cook
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - David B Grayden
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia
| |
Collapse
|
5
|
Panagiotopoulou M, Papasavvas CA, Schroeder GM, Thomas RH, Taylor PN, Wang Y. Fluctuations in EEG band power at subject-specific timescales over minutes to days explain changes in seizure evolutions. Hum Brain Mapp 2022; 43:2460-2477. [PMID: 35119173 PMCID: PMC9057101 DOI: 10.1002/hbm.25796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 01/14/2023] Open
Abstract
Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to know whether continuously recorded interictaliEEG features can capture signatures of these modulations over different timescales. In this study, we analyse continuous intracranial electroencephalographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG band power over timescales ranging from minutes up to 12 days. As expected and in agreement with previous studies, we find that all subjects show a circadian fluctuation in their iEEG band power. We additionally detect other fluctuations of similar magnitude on subject-specific timescales. Importantly, we find that a combination of these fluctuations on different timescales can explain changes in seizure evolutions in most subjects above chance level. These results suggest that subject-specific fluctuations in iEEG band power over timescales of minutes to days may serve as markers of seizure modulating processes. We hope that future study can link these detected fluctuations to their biological driver(s). There is a critical need to better understand seizure modulating processes, as this will enable the development of novel treatment strategies that could minimise the seizure spread, duration or severity and therefore the clinical impact of seizures.
Collapse
Affiliation(s)
- Mariella Panagiotopoulou
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Christoforos A. Papasavvas
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Gabrielle M. Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Rhys H. Thomas
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
- UCL Queen Square Institute of Neurology, Queen SquareLondon
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
- UCL Queen Square Institute of Neurology, Queen SquareLondon
| |
Collapse
|
6
|
Mokhothu TM, Tanaka KZ. Characterizing Hippocampal Oscillatory Signatures Underlying Seizures in Temporal Lobe Epilepsy. Front Behav Neurosci 2021; 15:785328. [PMID: 34899205 PMCID: PMC8656355 DOI: 10.3389/fnbeh.2021.785328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is a neurological condition characterized by focal brain hyperexcitability, resulting in abnormal neuronal discharge and uncontrollable seizures. The hippocampus, with its inherently highly synchronized firing patterns and relatively high excitability, is prone to epileptic seizures, and it is usually the focus of TLE. Researchers have identified hippocampal high-frequency oscillations (HFOs) as a salient feature in people with TLE and animal models of this disease, arising before or at the onset of the epileptic event. To a certain extent, these pathological HFOs have served as a marker and a potential target for seizure attenuation using electrical or optogenetic interventions. However, many questions remain about whether we can reliably distinguish pathological from non-pathological HFOs and whether they can tell us about the development of the disease. While this would be an arduous task to perform in humans, animal models of TLE provide an excellent opportunity to study the characteristics of HFOs in predicting how epilepsy evolves. This minireview will (1) summarize what we know about the oscillatory disruption in TLE, (2) summarize knowledge about oscillatory changes in the latent period and their role in predicting seizures, and (3) propose future studies essential to uncovering potential treatments based on early detection of pathological HFOs.
Collapse
Affiliation(s)
- Thato Mary Mokhothu
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kazumasa Zen Tanaka
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
7
|
Bandopadhyay R, Singh T, Ghoneim MM, Alshehri S, Angelopoulou E, Paudel YN, Piperi C, Ahmad J, Alhakamy NA, Alfaleh MA, Mishra A. Recent Developments in Diagnosis of Epilepsy: Scope of MicroRNA and Technological Advancements. BIOLOGY 2021; 10:1097. [PMID: 34827090 PMCID: PMC8615191 DOI: 10.3390/biology10111097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60-70% of patients, while the rest remain refractory. Poor seizure control is often associated with neuro-psychiatric comorbidities, mainly including memory impairment, depression, psychosis, neurodegeneration, motor impairment, neuroendocrine dysfunction, etc., resulting in poor prognosis. Effective treatment relies on early and correct detection of epileptic foci. Although there are currently a few well-established diagnostic techniques for epilepsy, they lack accuracy and cannot be applied to patients who are unsupportive or harbor metallic implants. Since a single test result from one of these techniques does not provide complete information about the epileptic foci, it is necessary to develop novel diagnostic tools. Herein, we provide a comprehensive overview of the current diagnostic tools of epilepsy, including electroencephalography (EEG) as well as structural and functional neuroimaging. We further discuss recent trends and advances in the diagnosis of epilepsy that will enable more effective diagnosis and clinical management of patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Guwahati 781101, Assam, India
| |
Collapse
|
8
|
Smith G, Stacey WC. The accuracy of quantitative EEG biomarker algorithms depends upon seizure onset dynamics. Epilepsy Res 2021; 176:106702. [PMID: 34229226 DOI: 10.1016/j.eplepsyres.2021.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To compare the performance of different ictal quantitative biomarkers of the seizure onset zone (SOZ) across many seizures in a cohort of consecutive patients with a variety of seizure onset patterns. METHODS The Epileptogenicity Index (EI, a measure of fast activity) and Slow Polarizing Shift index (SPS, a measure of infraslow activity) were calculated for 212 seizures (22 patients). After stratification by onset pattern, median index values inside and outside the SOZ were compared in aggregate and for each of the onset patterns. Receiver Operating Characteristic (ROC) curves were constructed to compare the performance of each index. RESULTS Median values of EI (0.056 vs 0.0087), SPS (0.27 vs 0.19), and CI (0.21 vs 0.12) were significantly higher for contacts inside the SOZ, all p < 0.0001. Analysis of AUC showed variable performance of these indices across seizure types, although AUC for EI and SPS was generally greatest for seizures with fast activity at onset. CONCLUSIONS All indices were significantly higher for contacts inside the SOZ; however, the performance of these indices varied depending on the pattern of seizure onset. SIGNIFICANCE These findings suggest that future studies of quantitative biomarkers of the SOZ should account for seizure onset pattern.
Collapse
Affiliation(s)
- Garnett Smith
- Department of Pediatrics, Division of Pediatric Neurology, University of Michigan, 1540 E Hospital Drive, Box 4279, Ann Arbor, MI, 48109-4279, USA.
| | - William C Stacey
- Department of Neurology, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA; Department of Biomedical Engineering, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA; Biointerfaces Institute, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA.
| |
Collapse
|
9
|
Bosl WJ, Leviton A, Loddenkemper T. Prediction of Seizure Recurrence. A Note of Caution. Front Neurol 2021; 12:675728. [PMID: 34054713 PMCID: PMC8155381 DOI: 10.3389/fneur.2021.675728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Great strides have been made recently in documenting that machine-learning programs can predict seizure occurrence in people who have epilepsy. Along with this progress have come claims that appear to us to be a bit premature. We anticipate that many people will benefit from seizure prediction. We also doubt that all will benefit. Although machine learning is a useful tool for aiding discovery, we believe that the greatest progress will come from deeper understanding of seizures, epilepsy, and the EEG features that enable seizure prediction. In this essay, we lay out reasons for optimism and skepticism.
Collapse
Affiliation(s)
- William J Bosl
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Health Informatics Program, University of San Francisco, San Francisco, CA, United States
| | - Alan Leviton
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Tobias Loddenkemper
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|