1
|
Hu S, Wei T, Li C, Wang X, Nguchu BA, Wang Y, Dong T, Yang Y, Ding Y, Qiu B, Yang W. Abnormalities in subcortical function and their treatment response in Wilson's disease. Neuroimage Clin 2024; 43:103618. [PMID: 38830274 PMCID: PMC11180346 DOI: 10.1016/j.nicl.2024.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Extensive neuroimaging abnormalities in subcortical regions build the pathophysiological basis of Wilson's disease (WD). Yet, subcortical topographic organization fails to articulate, leaving a huge gap in understanding the neural mechanism of WD. Thus, how functional abnormalities of WD subcortical regions influence complex clinical symptoms and response to treatment remain unknown. Using resting-state functional MRI data from 232 participants (including 130 WD patients and 102 healthy controls), we applied a connectivity-based parcellation technique to develop a subcortical atlas for WD. The atlas was further used to investigate abnormalities in subcortical function (ASF) by exploring intrasubcortical functional connectivity (FC) and topographic organization of cortico-subcortical FC. We further used support vector machine (SVM) to integrate these functional abnormalities into the ASF score, which serves as a biomarker for characterizing individual subcortical dysfunction for WD. Finally, the baseline ASF score and one-year treatment data of the follow-up WD patients were used to assess treatment response. A group set of subcortical parcellations was evaluated, in which 26 bilateral regions well recapitulated the anatomical nuclei of the subcortical areas of WD. The results of cortico-subcortical FC and intrasubcortical FC reveal that dysfunction of the somatomotor networks-lenticular nucleus-thalamic pathways is involved in complex symptoms of WD. The ASF score was able to characterize disease progression and was significantly associated with treatment response of WD. Our findings provide a comprehensive elaboration of functional abnormalities of WD subcortical regions and reveal their association with clinical presentations, improving our understanding of the functional neural underpinnings in WD. Furthermore, abnormalities in subcortical function could serve as a potential biomarker for understanding the disease progression and evaluating treatment response of WD.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China; Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 2300026, China; School of Medical Information Engineering, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230012, China
| | - Taohua Wei
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China; Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Chuanfu Li
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China.
| | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 2300026, China
| | | | - Yanming Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 2300026, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China; Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yulong Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yufeng Ding
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 2300026, China.
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China; Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China.
| |
Collapse
|
2
|
Wang A, Wei T, Wu H, Yang Y, Ding Y, Wang Y, Zhang C, Yang W. Lesions in White Matter in Wilson's Disease and Correlation with Clinical Characteristics. Can J Neurol Sci 2023; 50:710-718. [PMID: 35959686 DOI: 10.1017/cjn.2022.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Neuroimaging studies in Wilson's disease (WD) have identified various alterations in white matter (WM) microstructural organization. However, it remains unclear whether these alterations are localized to specific regions of fiber tracts, and what diagnostic value they might have. The purpose of this study is to explore the spatial profile of WM abnormalities along defined fiber tracts in WD and its clinical relevance. METHODS Ninety-nine patients with WD (62 men and 37 women) and 91 age- and sex-matched controls (59 men and 32 women) were recruited to take part in experiments of diffusion-weighted imaging with 64 gradient vectors. The data were calculated by FMRIB Software Library (FSL) software and Automated Fiber Quantification (AFQ) software. After registration, patient groups and normal groups were compared by Mann-Whitney U test analysis. RESULTS Compared with the controls, the patients with WD showed widespread fractional anisotropy reduction and mean diffusivity, radial diffusivity elevation of identified fiber tracts. Significant correlations between diffusion tensor imaging (DTI) parameters and the neurological Unified Wilson's Disease Rating Scale (UWDRS-N), serum ceruloplasmin, and 24-h urinary copper excretion were found. CONCLUSIONS The present study has provided evidence that the metrics of DTI could be utilized as a potential biomarker of neuropathological symptoms in WD. Damage to the microstructure of callosum forceps and corticospinal tract may be involved in the pathophysiological process of neurological symptoms in WD patients, such as gait and balance disturbances, involuntary movements, dysphagia, and autonomic dysfunction.
Collapse
Affiliation(s)
- Anqin Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Taohua Wei
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Hongli Wu
- Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Yulong Yang
- Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Yufeng Ding
- Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Yi Wang
- Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Chuanfeng Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Wu Y, Hu S, Wang Y, Dong T, Wu H, Wang A, Li C, Kan H. Altered microstructural pattern of the cortex and basal forebrain cholinergic system in wilson's disease: an automated fiber quantification tractography study. Brain Imaging Behav 2023; 17:200-212. [PMID: 36690883 DOI: 10.1007/s11682-022-00753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Basal forebrain (BF) cholinergic projection neurons form a highly extensive input to the cortex. Failure of BF cholinergic circuits is responsible for the cognitive impairment associated with Wilson's disease (WD), but whether and how the microstructural changes in fiber projections between the BF and cerebral cortex influence prospective memory (PM) remain poorly understood. We collected diffusion tensor imaging (DTI) data from 21 neurological WD individuals and 26 healthy controls (HCs). The experiment reconstructed the probabilistic streamlined tractography of 18 white matter tracts using an automated fiber quantification (AFQ) toolkit. Tract properties (FA, MD, RD, and AD) were computed for 100 points along each tract for each participant, and the differences between the groups were examined. Subsequently, correlation analysis was performed to evaluate whether abnormal microstructural white matter integrity measures correlate with PM performance. Additional investigations used a tract-based spatial statistics (TBSS) approach to identify regions with altered white matter structure between groups and verify the reliability of the AFQ results. The highest nonoverlapping DTI-related differences were detected in the anterior thalamic radiation (ATR), corticospinal tract (CST), corpus callosum, association fibers, and limbic system fibers. Additionally, PM parameters of the patient group were highly correlated with white matter microstructure changes in the inferior longitudinal fasciculus. Our study highlights that the performance of projections between cholinergic input and output areas-the cerebral cortex and BF-may serve as neural biomarkers of PM and disease prognosis.
Collapse
Affiliation(s)
- Yutong Wu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Sheng Hu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China. .,Centers for Biomedical Engineering, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Yi Wang
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Ting Dong
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Hongli Wu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Anqin Wang
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Chuanfu Li
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Hongxing Kan
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China.
| |
Collapse
|
4
|
Su D, Zhang Z, Zhang Z, Gan Y, Zhang Y, Liu X, Bi J, Ma L, Zhao H, Wang X, Wang Z, Ma H, Sifat S, Zhou J, Li W, Wu T, Jing J, Feng T. Microstructural and functional impairment of the basal ganglia in Wilson's disease: a multimodal neuroimaging study. Front Neurosci 2023; 17:1146644. [PMID: 37152597 PMCID: PMC10157043 DOI: 10.3389/fnins.2023.1146644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Objectives Magnetic susceptibility changes in brain MRI of Wilson's disease (WD) patients have been described in subcortical nuclei especially the basal ganglia. The objectives of this study were to investigate its relationship with other microstructural and functional alterations of the subcortical nuclei and the diagnostic utility of these MRI-related metrics. Methods A total of 22 WD patients and 20 healthy controls (HCs) underwent 3.0T multimodal MRI scanning. Susceptibility, volume, diffusion microstructural indices and whole-brain functional connectivity of the putamen (PU), globus pallidus (GP), caudate nucleus (CN), and thalamus (TH) were analyzed. Receiver operating curve (ROC) was applied to evaluate the diagnostic value of the imaging data. Correlation analysis was performed to explore the connection between susceptibility change and microstructure and functional impairment of WD and screen for neuroimaging biomarkers of disease severity. Results Wilson's disease patients demonstrated increased susceptibility in the PU, GP, and TH, and widespread atrophy and microstructural impairments in the PU, GP, CN, and TH. Functional connectivity decreased within the basal ganglia and increased between the PU and cortex. The ROC model showed higher diagnostic value of isotropic volume fraction (ISOVF, in the neurite orientation dispersion and density imaging model) compared with susceptibility. Severity of neurological symptoms was correlated with volume and ISOVF. Susceptibility was positively correlated with ISOVF in GP. Conclusion Microstructural impairment of the basal ganglia is related to excessive metal accumulation in WD. Brain atrophy and microstructural impairments are useful neuroimaging biomarkers for the neurological impairment of WD.
Collapse
Affiliation(s)
- Dongning Su
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhijin Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yawen Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingkui Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyao Liu
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingfeng Bi
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lingyan Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huiqing Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuemei Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huizi Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shairy Sifat
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson’s Research Centre, University of British Columbia and Vancouver Coastal Health, Vancouver, BC, Canada
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jing Jing,
| | - Tao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tao Feng,
| |
Collapse
|
5
|
Tian L, Dong T, Hu S, Zhao C, Yu G, Hu H, Yang W. Radiomic and clinical nomogram for cognitive impairment prediction in Wilson's disease. Front Neurol 2023; 14:1131968. [PMID: 37188313 PMCID: PMC10177658 DOI: 10.3389/fneur.2023.1131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To investigate potential biomarkers for the early detection of cognitive impairment in patients with Wilson's disease (WD), we developed a computer-assisted radiomics model to distinguish between WD and WD cognitive impairment. Methods Overall, 136 T1-weighted MR images were retrieved from the First Affiliated Hospital of Anhui University of Chinese Medicine, including 77 from patients with WD and 59 from patients with WD cognitive impairment. The images were divided into training and test groups at a ratio of 70:30. The radiomic features of each T1-weighted image were extracted using 3D Slicer software. R software was used to establish clinical and radiomic models based on clinical characteristics and radiomic features, respectively. The receiver operating characteristic profiles of the three models were evaluated to assess their diagnostic accuracy and reliability in distinguishing between WD and WD cognitive impairment. We combined relevant neuropsychological test scores of prospective memory to construct an integrated predictive model and visual nomogram to effectively assess the risk of cognitive decline in patients with WD. Results The area under the curve values for distinguishing WD and WD cognitive impairment for the clinical, radiomic, and integrated models were 0.863, 0.922, and 0.935 respectively, indicative of excellent performance. The nomogram based on the integrated model successfully differentiated between WD and WD cognitive impairment. Conclusion The nomogram developed in the current study may assist clinicians in the early identification of cognitive impairment in patients with WD. Early intervention following such identification may help improve long-term prognosis and quality of life of these patients.
Collapse
Affiliation(s)
- Liwei Tian
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, Anhui, China
- *Correspondence: Ting Dong,
| | - Sheng Hu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Chenling Zhao
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Guofang Yu
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Huibing Hu
- Qimen People's Hospital, Huangshan, Anhui, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
6
|
Dysfunction of the Lenticular Nucleus Is Associated with Dystonia in Wilson's Disease. Brain Sci 2022; 13:brainsci13010007. [PMID: 36671989 PMCID: PMC9856696 DOI: 10.3390/brainsci13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Dysfunction of the lenticular nucleus is thought to contribute to neurological symptoms in Wilson's disease (WD). However, very little is known about whether and how the lenticular nucleus influences dystonia by interacting with the cerebral cortex and cerebellum. To solve this problem, we recruited 37 WD patients (20 men; age, 23.95 ± 6.95 years; age range, 12-37 years) and 37 age- and sex-matched healthy controls (HCs) (25 men; age, 25.19 ± 1.88 years; age range, 20-30 years), and each subject underwent resting-state functional magnetic resonance imaging (RS-fMRI) scans. The muscle biomechanical parameters and Unified Wilson Disease Rating Scale (UWDRS) were used to evaluate the level of dystonia and clinical representations, respectively. The lenticular nucleus, including the putamen and globus pallidus, was divided into 12 subregions according to dorsal, ventral, anterior and posterior localization and seed-based functional connectivity (FC) was calculated for each subregion. The relationships between FC changes in the lenticular nucleus with muscle tension levels and clinical representations were further investigated by correlation analysis. Dystonia was diagnosed by comparing all WD muscle biomechanical parameters with healthy controls (HCs). Compared with HCs, FC decreased from all subregions in the putamen except the right ventral posterior part to the middle cingulate cortex (MCC) and decreased FC of all subregions in the putamen except the left ventral anterior part to the cerebellum was observed in patients with WD. Patients with WD also showed decreased FC of the left globus pallidus primarily distributed in the MCC and cerebellum and illustrated decreased FC from the right globus pallidus to the cerebellum. FC from the putamen to the MCC was significantly correlated with psychiatric symptoms. FC from the putamen to the cerebellum was significantly correlated with muscle tension and neurological symptoms. Additionally, the FC from the globus pallidus to the cerebellum was also associated with muscle tension. Together, these findings highlight that lenticular nucleus-cerebellum circuits may serve as neural biomarkers of dystonia and provide implications for the neural mechanisms underlying dystonia in WD.
Collapse
|
7
|
Brain microstructural abnormalities in patients with Wilson’s disease: A systematic review of diffusion tenor imaging studies. Brain Imaging Behav 2022; 16:2809-2840. [DOI: 10.1007/s11682-022-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
8
|
Shribman S, Burrows M, Convery R, Bocchetta M, Sudre CH, Acosta-Cabronero J, Thomas DL, Gillett GT, Tsochatzis EA, Bandmann O, Rohrer JD, Warner TT. Neuroimaging Correlates of Cognitive Deficits in Wilson's Disease. Mov Disord 2022; 37:1728-1738. [PMID: 35723521 PMCID: PMC9542291 DOI: 10.1002/mds.29123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cognitive impairment is common in neurological presentations of Wilson's disease (WD). Various domains can be affected, and subclinical deficits have been reported in patients with hepatic presentations. Associations with imaging abnormalities have not been systematically tested. OBJECTIVE The aim was to determine the neuroanatomical basis for cognitive deficits in WD. METHODS We performed a 16-item neuropsychological test battery and magnetic resonance brain imaging in 40 patients with WD. The scores for each test were compared between patients with neurological and hepatic presentations and with normative data. Associations with Unified Wilson's Disease Rating Scale neurological examination subscores were examined. Quantitative, whole-brain, multimodal imaging analyses were used to identify associations with neuroimaging abnormalities in chronically treated stable patients. RESULTS Abstract reasoning, executive function, processing speed, calculation, and visuospatial function scores were lower in patients with neurological presentations than in those with hepatic presentations and correlated with neurological examination subscores. Deficits in abstract reasoning and phonemic fluency were associated with lower putamen volumes even after controlling for neurological severity. About half of patients with hepatic presentations had poor performance in memory for faces, cognitive flexibility, or associative learning relative to normative data. These deficits were associated with widespread cortical atrophy and/or white matter diffusion abnormalities. CONCLUSIONS Subtle cognitive deficits in patients with seemingly hepatic presentations represent a distinct neurological phenotype associated with diffuse cortical and white matter pathology. This may precede the classical neurological phenotype characterized by movement disorders and executive dysfunction and be associated with basal ganglia damage. A binary phenotypic classification for WD may no longer be appropriate. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Samuel Shribman
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| | - Maggie Burrows
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| | - Rhian Convery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom.,Centre for Medical Image Computing, University College London, London, United Kingdom.,Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | | | - David L Thomas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Godfrey T Gillett
- Department of Clinical Chemistry, Northern General Hospital, Sheffield, United Kingdom
| | - Emmanuel A Tsochatzis
- UCL Institute of Liver and Digestive Health and Royal Free Hospital, London, United Kingdom
| | - Oliver Bandmann
- Sheffield Institute of Translational Neuroscience, Sheffield, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| |
Collapse
|
9
|
Shribman S, Bocchetta M, Sudre CH, Acosta-Cabronero J, Burrows M, Cook P, Thomas DL, Gillett GT, Tsochatzis EA, Bandmann O, Rohrer JD, Warner TT. Neuroimaging correlates of brain injury in Wilson's disease: a multimodal, whole-brain MRI study. Brain 2022; 145:263-275. [PMID: 34289020 PMCID: PMC8967100 DOI: 10.1093/brain/awab274] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 11/23/2022] Open
Abstract
Wilson's disease is an autosomal-recessive disorder of copper metabolism with neurological and hepatic presentations. Chelation therapy is used to 'de-copper' patients but neurological outcomes remain unpredictable. A range of neuroimaging abnormalities have been described and may provide insights into disease mechanisms, in addition to prognostic and monitoring biomarkers. Previous quantitative MRI analyses have focused on specific sequences or regions of interest, often stratifying chronically treated patients according to persisting symptoms as opposed to initial presentation. In this cross-sectional study, we performed a combination of unbiased, whole-brain analyses on T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and susceptibility-weighted imaging data from 40 prospectively recruited patients with Wilson's disease (age range 16-68). We compared patients with neurological (n = 23) and hepatic (n = 17) presentations to determine the neuroradiological sequelae of the initial brain injury. We also subcategorized patients according to recent neurological status, classifying those with neurological presentations or deterioration in the preceding 6 months as having 'active' disease. This allowed us to compare patients with active (n = 5) and stable (n = 35) disease and identify imaging correlates for persistent neurological deficits and copper indices in chronically treated, stable patients. Using a combination of voxel-based morphometry and region-of-interest volumetric analyses, we demonstrate that grey matter volumes are lower in the basal ganglia, thalamus, brainstem, cerebellum, anterior insula and orbitofrontal cortex when comparing patients with neurological and hepatic presentations. In chronically treated, stable patients, the severity of neurological deficits correlated with grey matter volumes in similar, predominantly subcortical regions. In contrast, the severity of neurological deficits did not correlate with the volume of white matter hyperintensities, calculated using an automated lesion segmentation algorithm. Using tract-based spatial statistics, increasing neurological severity in chronically treated patients was associated with decreasing axial diffusivity in white matter tracts whereas increasing serum non-caeruloplasmin-bound ('free') copper and active disease were associated with distinct patterns of increasing mean, axial and radial diffusivity. Whole-brain quantitative susceptibility mapping identified increased iron deposition in the putamen, cingulate and medial frontal cortices of patients with neurological presentations relative to those with hepatic presentations and neurological severity was associated with iron deposition in widespread cortical regions in chronically treated patients. Our data indicate that composite measures of subcortical atrophy provide useful prognostic biomarkers, whereas abnormal mean, axial and radial diffusivity are promising monitoring biomarkers. Finally, deposition of brain iron in response to copper accumulation may directly contribute to neurodegeneration in Wilson's disease.
Collapse
Affiliation(s)
- Samuel Shribman
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing, University College London, London WC1E 7HB, UK
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
- Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK
| | | | - Maggie Burrows
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Paul Cook
- Department of Clinical Biochemistry, Southampton General Hospital, Southampton SO16 6YD, UK
| | - David L Thomas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Godfrey T Gillett
- Department of Clinical Chemistry, Northern General Hospital, Sheffield S5 7AU, UK
| | - Emmanuel A Tsochatzis
- UCL Institute of Liver and Digestive Health and Royal Free Hospital, London NW3 2PF, UK
| | - Oliver Bandmann
- Sheffield Institute of Translational Neuroscience, Sheffield S10 2HQ, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| |
Collapse
|
10
|
Clinical significance of self-descriptive apathy assessment in patients with neurological form of Wilson's disease. Neurol Sci 2021; 43:1385-1394. [PMID: 34125323 PMCID: PMC8789726 DOI: 10.1007/s10072-021-05366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 11/30/2022]
Abstract
Background and aim Apathy is one of the neuropsychiatric symptoms of Wilson’s disease (WD) which typically affects the brain’s fronto-basal circuits. Lack of agreed diagnostic criteria and common use of self-description assessment tools lead to underestimation of this clinical phenomenon. The aim of this study was to investigate whether subjective and informant-based clinical features of apathy in patients with WD enable clinicians to make a valid diagnosis. Methods Multiple aspects of goal-oriented behavior were assessed in 30 patients with the neurological form of WD and 30 age-matched healthy participants using two questionnaires, the Lille Apathy Rating Scale (LARS) and the Dysexecutive Questionnaire (DEX). Both included a self-descriptive and a caregiver/proxy version. Cognitive functioning was estimated with the use of Addenbrooke’s Cognitive Examination-Revised. Results Patients obtained significantly worse scores on all clinical scales when more objective measures were considered. Features of apathy and executive dysfunction were revealed in patients’ caregiver versions of LARS and DEX, which may indicate poor self-awareness of patients with WD. Roughly 30% of participants were likely to present with clinically meaningful symptoms, independent of cognitive dysfunction. Conclusions Methods relying on self-description appear inferior to informant-based scales when diagnosing apathy. More objective criteria and measurement tools are needed to better understand this clinical syndrome.
Collapse
|