1
|
Haigh A, Buckby B. Rhythmic Attention and ADHD: A Narrative and Systematic Review. Appl Psychophysiol Biofeedback 2024; 49:185-204. [PMID: 38198019 DOI: 10.1007/s10484-023-09618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
In recent decades, a growing body of evidence has confirmed the existence of rhythmic fluctuations in attention, but the effect of inter-individual variations in these attentional rhythms has yet to be investigated. The aim of this review is to identify trends in the attention deficit/hyperactivity disorder (ADHD) literature that could be indicative of between-subject differences in rhythmic attention. A narrative review of the rhythmic attention and electrophysiological ADHD research literature was conducted, and the commonly-reported difference in slow-wave power between ADHD subjects and controls was found to have the most relevance to an understanding of rhythmic attention. A systematic review of the literature examining electrophysiological power differences in ADHD was then conducted to identify studies with conditions similar to those utilised in the rhythmic attention research literature. Fifteen relevant studies were identified and reviewed. The most consistent finding in the studies reviewed was for no spectral power differences between ADHD subjects and controls. However, the strongest trend in the studies reporting power differences was for higher power in the delta and theta frequency bands and lower power in the alpha band. In the context of rhythmic attention, this trend is suggestive of a slowing in the frequency and/or increase in the amplitude of the attentional oscillation in a subgroup of ADHD subjects. It is suggested that this characteristic electrophysiological modulation could be indicative of a global slowing of the attentional rhythm and/or an increase in the rhythmic recruitment of neurons in frontal attention networks in individuals with ADHD.
Collapse
Affiliation(s)
- Andrew Haigh
- Department of Psychology, James Cook University, Townsville, Australia.
| | - Beryl Buckby
- Department of Psychology, James Cook University, Townsville, Australia
| |
Collapse
|
2
|
Prabhu P, Morise H, Kudo K, Beagle A, Mizuiri D, Syed F, Kotegar KA, Findlay A, Miller BL, Kramer JH, Rankin KP, Garcia PA, Kirsch HE, Vossel K, Nagarajan SS, Ranasinghe KG. Abnormal gamma phase-amplitude coupling in the parahippocampal cortex is associated with network hyperexcitability in Alzheimer's disease. Brain Commun 2024; 6:fcae121. [PMID: 38665964 PMCID: PMC11043655 DOI: 10.1093/braincomms/fcae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
While animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing. In this study, we sought to examine the local neuronal activity and excitability using gamma PAC, within brain regions vulnerable to early AD pathophysiology-entorhinal cortex and parahippocampus, in a clinical population of patients with AD and age-matched controls. Our clinical cohorts consisted of a well-characterized cohort of AD patients (n = 50; age, 60 ± 8 years) with positive AD biomarkers, and age-matched, cognitively unimpaired controls (n = 35; age, 63 ± 5.8 years). We identified the presence or the absence of epileptiform activity in AD patients (AD patients with epileptiform activity, AD-EPI+, n = 20; AD patients without epileptiform activity, AD-EPI-, n = 30) using long-term electroencephalography (LTM-EEG) and 1-hour long magnetoencephalography (MEG) with simultaneous EEG. Using the source reconstructed MEG data, we computed gamma PAC as the coupling between amplitude of the gamma frequency (30-40 Hz) with phase of the theta (4-8 Hz) and alpha (8-12 Hz) frequency oscillations, within entorhinal and parahippocampal cortices. We found that patients with AD have reduced gamma PAC in the left parahippocampal cortex, compared to age-matched controls. Furthermore, AD-EPI+ patients showed greater reductions in gamma PAC than AD-EPI- in bilateral parahippocampal cortices. In contrast, entorhinal cortices did not show gamma PAC abnormalities in patients with AD. Our findings demonstrate the spatial patterns of altered gamma oscillations indicating possible region-specific manifestations of network hyperexcitability within medial temporal lobe regions vulnerable to AD pathophysiology. Greater deficits in AD-EPI+ suggests that reduced gamma PAC is a sensitive index of network hyperexcitability in AD patients. Collectively, the current results emphasize the importance of investigating the role of neural circuit hyperexcitability in early AD pathophysiology and explore its potential as a modifiable contributor to AD pathobiology.
Collapse
Affiliation(s)
- Pooja Prabhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Data science and Computer Applications, Manipal Institute of Technology, Manipal 576104, India
| | - Hirofumi Morise
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa 920-0177, Japan
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa 920-0177, Japan
| | - Alexander Beagle
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Faatimah Syed
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Karunakar A Kotegar
- Department of Data science and Computer Applications, Manipal Institute of Technology, Manipal 576104, India
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul A Garcia
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Heidi E Kirsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Kiani MM, Heidari Beni MH, Aghajan H. Aberrations in temporal dynamics of cognitive processing induced by Parkinson's disease and Levodopa. Sci Rep 2023; 13:20195. [PMID: 37980451 PMCID: PMC10657430 DOI: 10.1038/s41598-023-47410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The motor symptoms of Parkinson's disease (PD) have been shown to significantly improve by Levodopa. However, despite the widespread adoption of Levodopa as a standard pharmaceutical drug for the treatment of PD, cognitive impairments linked to PD do not show visible improvement with Levodopa treatment. Furthermore, the neuronal and network mechanisms behind the PD-induced cognitive impairments are not clearly understood. In this work, we aim to explain these cognitive impairments, as well as the ones exacerbated by Levodopa, through examining the differential dynamic patterns of the phase-amplitude coupling (PAC) during cognitive functions. EEG data recorded in an auditory oddball task performed by a cohort consisting of controls and a group of PD patients during both on and off periods of Levodopa treatment were analyzed to derive the temporal dynamics of the PAC across the brain. We observed distinguishing patterns in the PAC dynamics, as an indicator of information binding, which can explain the slower cognitive processing associated with PD in the form of a latency in the PAC peak time. Thus, considering the high-level connections between the hippocampus, the posterior and prefrontal cortices established through the dorsal and ventral striatum acting as a modulatory system, we posit that the primary issue with cognitive impairments of PD, as well as Levodopa's cognitive deficit side effects, can be attributed to the changes in temporal dynamics of dopamine release influencing the modulatory function of the striatum.
Collapse
Affiliation(s)
- Mohammad Mahdi Kiani
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Wu D, Zhao B, Xie H, Xu Y, Yin Z, Bai Y, Fan H, Zhang Q, Liu D, Hu T, Jiang Y, An Q, Zhang X, Yang A, Zhang J. Profiling the low-beta characteristics of the subthalamic nucleus in early- and late-onset Parkinson's disease. Front Aging Neurosci 2023; 15:1114466. [PMID: 36875708 PMCID: PMC9978704 DOI: 10.3389/fnagi.2023.1114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives Low-beta oscillation (13-20 Hz) has rarely been studied in patients with early-onset Parkinson's disease (EOPD, age of onset ≤50 years). We aimed to explore the characteristics of low-beta oscillation in the subthalamic nucleus (STN) of patients with EOPD and investigate the differences between EOPD and late-onset Parkinson's disease (LOPD). Methods We enrolled 31 EOPD and 31 LOPD patients, who were matched using propensity score matching. Patients underwent bilateral STN deep brain stimulation (DBS). Local field potentials were recorded using intraoperative microelectrode recording. We analyzed the low-beta band parameters, including aperiodic/periodic components, beta burst, and phase-amplitude coupling. We compared low-beta band activity between EOPD and LOPD. Correlation analyses were performed between the low-beta parameters and clinical assessment results for each group. Results We found that the EOPD group had lower aperiodic parameters, including offset (p = 0.010) and exponent (p = 0.047). Low-beta burst analysis showed that EOPD patients had significantly higher average burst amplitude (p = 0.016) and longer average burst duration (p = 0.011). Furthermore, EOPD had higher proportion of long burst (500-650 ms, p = 0.008), while LOPD had higher proportion of short burst (200-350 ms, p = 0.007). There was a significant difference in phase-amplitude coupling values between low-beta phase and fast high frequency oscillation (300-460 Hz) amplitude (p = 0.019). Conclusion We found that low-beta activity in the STN of patients with EOPD had characteristics that varied when compared with LOPD, and provided electrophysiological evidence for different pathological mechanisms between the two types of PD. These differences need to be considered when applying adaptive DBS on patients of different ages.
Collapse
Affiliation(s)
- Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Bong SH, Kim JW. The Role of Quantitative Electroencephalogram in the Diagnosis and Subgrouping of Attention-Deficit/Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak 2021; 32:85-92. [PMID: 34285632 PMCID: PMC8262972 DOI: 10.5765/jkacap.210010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) leads to functional decline in academic performance, interpersonal relationships, and development in school-aged children. Early diagnosis and appropriate intervention can significantly reduce the functional decline caused by ADHD. Currently, there is no established biological marker for ADHD. Some studies have suggested that various indicators from the quantitative electroencephalogram (QEEG) may be useful biological markers for the diagnosis of ADHD. Until the 2010s, theta/beta ratio (TBR) was a biomarker candidate for ADHD that consistently showed high diagnostic value. However, limitations of TBR have recently been reported. Studies have demonstrated that phase-amplitude coupling, especially theta phase-gamma amplitude coupling, are related to cognitive dysfunction and may assist in the diagnosis of ADHD. As yet, the underlying mechanism is not clearly established, and the clinical efficacy of these biomarkers needs to be proven through well-controlled studies. Based on the heterogeneous characteristics of ADHD, subgrouping through QEEG plays a key role in diagnosis and treatment planning. Sophisticated, well-designed studies and meta-analyses are necessary to confirm these findings.
Collapse
Affiliation(s)
- Su Hyun Bong
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jun Won Kim
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|