1
|
Li J, Ng W, Liu Y, Fang X, Wang Z, Pei L, Wei X. Neuroplasticity of the white matter tracts underlying recovery of diarrhea-predominant irritable bowel syndrome following acupuncture treatment. Front Neurosci 2024; 18:1383041. [PMID: 39364438 PMCID: PMC11447489 DOI: 10.3389/fnins.2024.1383041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder frequently associated with other pain syndromes and psychiatric conditions, including depression and anxiety. These abnormalities coincide with alterations in the brain's structure, particularly in the thalamus and cingulate system. Acupuncture has been demonstrated to be highly effective in treating IBS. However, it remains unclear how white matter (WM) tracts change after acupuncture treatment, and whether the neuroplasticity of these tracts can serve as a neural marker to assist in the development of novel treatments. In this study, we aim to answer these questions by investigating longitudinal changes in the WM of the thalamus and cingulate system in a group of diarrhea-predominant irritable bowel syndrome (IBS-D) patients before and after acupuncture treatment. We found that after acupuncture treatment, as IBS symptoms improved, there were significant changes in the microstructure of the right thalamus radiation (TR) (p < 0.05) and the right cingulum hippocampus (CH) (p < 0.05). At the same time, patients with reduced IBS symptom severity scores (SSSs) were associated with the change of the right CH (p = 0.015, r = -0.491), while reduced depressive conditions correlated with the change of the left TR (p = 0.019, r = 0.418). In addition, the consequences for the quality of life (QOL) showed a correlation with the right cingulum [cingulate cortex (CC)] (p = 0.012, r = 0.504) and left TR (p = 0.027, r = -0.397). Our study highlighted the potential implications of neuroplasticity in WM tracts for IBS. Furthermore, these findings suggested that the right CH, TR, and right CC can serve as potential "biomarkers" of IBS-D recovery under acupuncture treatments.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - WingYi Ng
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - YongKang Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - XiaoKun Fang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - ZhongQiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - LiXia Pei
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - XueHu Wei
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Tang Y, Sun H, Plummer C, Vogrin SJ, Li H, Li Y, Chen L. Association between patent foramen ovale and migraine: evidence from a resting-state fMRI study. Brain Imaging Behav 2024; 18:720-729. [PMID: 38381323 PMCID: PMC11364569 DOI: 10.1007/s11682-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
A relationship between migraine without aura (MO) and patent foramen ovale (PFO) has been observed, but the neural basis underlying this relationship remains elusive. Utilizing independent component analysis via functional magnetic resonance imaging, we examined functional connectivity (FC) within and across networks in 146 patients with MO (75 patients with and 71 patients without PFO) and 70 healthy controls (35 patients each with and without PFO) to elucidate the individual effects of MO and PFO, as well as their interaction, on brain functional networks. The main effect of PFO manifested exclusively in the FC among the visual, auditory, default mode, dorsal attention and salience networks. Furthermore, the interaction effect between MO and PFO was discerned in brain clusters of the left frontoparietal network and lingual gyrus network, as well as the internetwork FC between the left frontoparietal network and the default mode network (DMN), the occipital pole and medial visual networks, and the dorsal attention and salience networks. Our findings suggest that the presence of a PFO shunt in patients with MO is accompanied by various FC changes within and across networks. These changes elucidate the intricate mechanisms linked to PFO-associated migraines and provide a basis for identifying novel noninvasive biomarkers.
Collapse
Affiliation(s)
- Yusha Tang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guoxue Road, Chengdu, Sichuan Province, 610041, China
| | - Huaiqiang Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chris Plummer
- Department of Neuroimaging, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Simon J Vogrin
- Department of Neuroimaging, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Neurosciences, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Hua Li
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guoxue Road, Chengdu, Sichuan Province, 610041, China
| | - Yajiao Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guoxue Road, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
3
|
Alam MJ, Chen JDZ. Non-invasive neuromodulation: an emerging intervention for visceral pain in gastrointestinal disorders. Bioelectron Med 2023; 9:27. [PMID: 37990288 PMCID: PMC10664460 DOI: 10.1186/s42234-023-00130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Gastrointestinal (GI) disorders, which extend from the esophagus to the anus, are the most common diseases of the GI tract. Among these disorders, pain, encompassing both abdominal and visceral pain, is a predominant feature, affecting the patients' quality of life and imposing a substantial financial burden on society. Pain signals originating from the gut intricately shape brain dynamics. In response, the brain sends appropriate descending signals to respond to pain through neuronal inhibition. However, due to the heterogeneous nature of the disease and its limited pathophysiological understanding, treatment options are minimal and often controversial. Consequently, many patients with GI disorders use complementary and alternative therapies such as neuromodulation to treat visceral pain. Neuromodulation intervenes in the central, peripheral, or autonomic nervous system by alternating or modulating nerve activity using electrical, electromagnetic, chemical, or optogenetic methodologies. Here, we review a few emerging noninvasive neuromodulation approaches with promising potential for alleviating pain associated with functional dyspepsia, gastroparesis, irritable bowel syndrome, inflammatory bowel disease, and non-cardiac chest pain. Moreover, we address critical aspects, including the efficacy, safety, and feasibility of these noninvasive neuromodulation methods, elucidate their mechanisms of action, and outline future research directions. In conclusion, the emerging field of noninvasive neuromodulation appears as a viable alternative therapeutic avenue for effectively managing visceral pain in GI disorders.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Zhao M, Hao Z, Li M, Xi H, Hu S, Wen J, Gao Y, Antwi CO, Jia X, Yu Y, Ren J. Functional changes of default mode network and structural alterations of gray matter in patients with irritable bowel syndrome: a meta-analysis of whole-brain studies. Front Neurosci 2023; 17:1236069. [PMID: 37942144 PMCID: PMC10627928 DOI: 10.3389/fnins.2023.1236069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Background Irritable bowel syndrome (IBS) is a brain-gut disorder with high global prevalence, resulting from abnormalities in brain connectivity of the default mode network and aberrant changes in gray matter (GM). However, the findings of previous studies about IBS were divergent. Therefore, we conducted a meta-analysis to identify common functional and structural alterations in IBS patients. Methods Altogether, we identified 12 studies involving 194 IBS patients and 230 healthy controls (HCs) from six databases using whole-brain resting state functional connectivity (rs-FC) and voxel-based morphometry. Anisotropic effect-size signed differential mapping (AES-SDM) was used to identify abnormal functional and structural changes as well as the overlap brain regions between dysconnectivity and GM alterations. Results Findings indicated that, compared with HCs, IBS patients showed abnormal rs-FC in left inferior parietal gyrus, left lingual gyrus, right angular gyrus, right precuneus, right amygdala, right median cingulate cortex, and left hippocampus. Altered GM was detected in the fusiform gyrus, left triangular inferior frontal gyrus (IFG), right superior marginal gyrus, left anterior cingulate gyrus, left rectus, left orbital IFG, right triangular IFG, right putamen, left superior parietal gyrus and right precuneus. Besides, multimodal meta-analysis identified left middle frontal gyrus, left orbital IFG, and right putamen as the overlapped regions. Conclusion Our results confirm that IBS patients have abnormal alterations in rs-FC and GM, and reveal brain regions with both functional and structural alterations. These results may contribute to understanding the underlying pathophysiology of IBS. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42022351342.
Collapse
Affiliation(s)
- Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongyu Xi
- School of Western Languages, Heilongjiang University, Harbin, China
| | - Su Hu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jianjie Wen
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yanyan Gao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Collins Opoku Antwi
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yang Yu
- Department of Psychiatry, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Ren
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
5
|
Zhang B, Wu D, Guo Y, Yan W, Liu X, Yang Z, Deng J, Wang H. Altered large-scale internetwork functional connectivity in patients with vestibular migraine and migraine without aura. Neurosci Lett 2023; 800:137123. [PMID: 36780940 DOI: 10.1016/j.neulet.2023.137123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
OBJECTIVE To investigate large-scale internetwork functional connectivity in patients with vestibular migraine (VM) and migraine without aura (MwoA). METHODS Resting-state functional magnetic resonance imaging data from 34 VM patients, 34 MwoA patients, and 33 healthy controls (HCs) were collected and the results were analyzed using independent component analysis (ICA). We also analyzed the correlations between clinical data and internetwork functional connectivity. RESULTS In contrast to HCs, MwoA patients showed decreased functional connectivity between the left frontoparietal network (lFPN) and right frontoparietal network (rFPN), with increased functional connectivity between the sensorimotor network (SMN) and lateral visual network (lVN). When compared to MwoA patients, VM patients demonstrated decreased functional network connectivity between the dorsal attention network (DAN) and posterior medial visual network (pmVN), between the SMN and pmVN, and between the SMN and lVN. Meanwhile, increased functional network connectivity was found between the lFPN and rFPN; however, there was no significant difference in functional network connectivity between VM patients and HCs. In addition, associations were found between clinical data and internetwork functional connectivity. CONCLUSION Functional connectivity between the lFPN and rFPN was reduced in patients with MwoA compared with HCs, which may indicate functional impairment in cognitive control, attention, somatosensory perception, and emotion regulation in patients with MwoA. VM patients showed decreased functional connectivity between the DAN, SMN, pmVN and lVN compared to patients with MwoA, which could account for the multisensory integration abnormalities and be the cause of vestibular symptoms in VM patients. These findings offer fresh perspectives on the pathophysiology of VM and MwoA.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongpeng Wu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yonghua Guo
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjing Yan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejun Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhengjie Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin Deng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Yin Z, Wang Z, Li Y, Zhou J, Chen Z, Xia M, Zhang X, Wu J, Zhao L, Liang F. Neuroimaging studies of acupuncture on Alzheimer's disease: a systematic review. BMC Complement Med Ther 2023; 23:63. [PMID: 36823586 PMCID: PMC9948384 DOI: 10.1186/s12906-023-03888-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Acupuncture effectively improves cognitive function in Alzheimer's disease (AD). Many neuroimaging studies have found significant brain alterations after acupuncture treatment of AD, but the underlying central modulation mechanism is unclear. OBJECTIVE This review aims to provide neuroimaging evidence to understand the central mechanisms of acupuncture in patients with AD. METHODS Relevant neuroimaging studies about acupuncture for AD were retrieved from eight English and Chinese medicine databases (PubMed, Embase, Cochrane Library, Web of Science, SinoMed, CNKI, WF, VIP) and other resources from inception of databases until June 1, 2022, and their methodological quality was assessed using RoB 2.0 and ROBINS - I. Brain neuroimaging information was extracted to investigate the potential neural mechanism of acupuncture for AD. Descriptive statistics were used for data analysis. RESULTS Thirteen neuroimaging studies involving 275 participants were included in this review, and the overall methodological quality of included studies was moderate. The approaches applied included task-state functional magnetic resonance imaging (ts-fMRI; n = 9 studies) and rest-state functional magnetic resonance imaging (rs-fMRI; n = 4 studies). All studies focused on the instant effect of acupuncture on the brains of AD participants, including the cingulate gyrus, middle frontal gyrus, and cerebellum, indicating that acupuncture may regulate the default mode, central executive, and frontoparietal networks. CONCLUSION This study provides evidence of the neural mechanisms underlying the effect of acupuncture on AD involving cognitive- and motor-associated networks. However, this evidence is still in the preliminary investigation stage. Large-scale, well-designed, multimodal neuroimaging trials are still required to provide comprehensive insight into the central mechanism underlying the effect of acupuncture on AD. (Systematic review registration at PROSPERO, No. CRD42022331527).
Collapse
Affiliation(s)
- Zihan Yin
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Ziqi Wang
- grid.517561.1the Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Yaqin Li
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Zhou
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghong Chen
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Manze Xia
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Xinyue Zhang
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Jiajing Wu
- grid.417409.f0000 0001 0240 6969School of Nursing, Zunyi Medical University, Zunyi, China
| | - Ling Zhao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China.
| | - Fanrong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China.
| |
Collapse
|
7
|
Zhou Y, Gong L, Yang Y, Tan L, Ruan L, Chen X, Luo H, Ruan J. Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability. J Headache Pain 2023; 24:13. [PMID: 36800935 PMCID: PMC9940435 DOI: 10.1186/s10194-023-01551-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2023] [Indexed: 02/21/2023] Open
Abstract
OBJECTIVE The changes in resting-state functional networks and their correlations with clinical traits remain to be clarified in migraine. Here we aim to investigate the brain spatio-temporal dynamics of resting-state networks and their possible correlations with the clinical traits in migraine. METHODS Twenty Four migraine patients without aura and 26 healthy controls (HC) were enrolled. Each included subject underwent a resting-state EEG and echo planar imaging examination. The disability of migraine patients was evaluated by Migraine Disability Assessment (MIDAS). After data acquisition, EEG microstates (Ms) combining functional connectivity (FC) analysis based on Schafer 400-seven network atlas were performed. Then, the correlation between obtained parameters and clinical traits was investigated. RESULTS Compared with HC group, the brain temporal dynamics depicted by microstates showed significantly increased activity in functional networks involving MsB and decreased activity in functional networks involving MsD; The spatial dynamics were featured by decreased intra-network FC within the executive control network( ECN) and inter-network FC between dorsal attention network (DAN) and ECN (P < 0.05); Moreover, correlation analysis showed that the MIDAS score was positively correlated with the coverage and duration of MsC, and negatively correlated with the occurrence of MsA; The FC within default mode network (DMN), and the inter-FC of ECN- visual network (VN), ECN- limbic network, VN-limbic network was negatively correlated with MIDAS. However, the FC of DMN-ECN was positively correlated with MIDAS; Furthermore, significant interactions between the temporal and spatial dynamics were also obtained. CONCLUSIONS Our study confirmed the notion that altered spatio-temporal dynamics exist in migraine patients during resting-state. And the temporal dynamics, the spatial changes and the clinical traits such as migraine disability interact with each other. The spatio-temporal dynamics obtained from EEG microstate and fMRI FC analyses may be potential biomarkers for migraine and with a huge potential to change future clinical practice in migraine.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Neurology, Jianyang People's Hospital, Jianyang, 641400, China
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Liusheng Gong
- Department of Neurology, Jianyang People's Hospital, Jianyang, 641400, China
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yushu Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Lili Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China.
| |
Collapse
|
8
|
Ning Y, Zheng S, Feng S, Yao H, Feng Z, Liu X, Dong L, Jia H. The altered intrinsic functional connectivity after acupuncture at shenmen (HT7) in acute sleep deprivation. Front Neurol 2022; 13:947379. [PMID: 35959405 PMCID: PMC9360611 DOI: 10.3389/fneur.2022.947379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Accumulating evidence has shown that acupuncture could significantly improve the sleep quality and cognitive function of individuals suffering from insufficient sleep. Numerous animal studies have confirmed the effects and mechanisms of acupuncture on acute sleep deprivation (SD). However, the role of acupuncture on individuals after acute SD remains unclear. Methods In the current study, we recruited 30 healthy subjects with regular sleep. All subjects received resting-state fMRI scans during the rested wakefulness (RW) state and after 24 h of total SD. The scan after 24 h of total SD included two resting-state fMRI sessions before and after needling at Shenmen (HT7). Both edge-based and large-scale network FCs were calculated. Results The edge-based results showed the suprathreshold edges with abnormal between-network FC involving all paired networks except somatosensory motor network (SMN)-SCN between the SD and RW state, while both decreased and increased between-network FC of edges involving all paired networks except frontoparietal network (FPN)-subcortical network (SCN) between before and after acupuncture at HT7. Compared with the RW state, the large-scale brain network results showed decreased between-network FC in SMN-Default Mode Network (DMN), SMN-FPN, and SMN-ventral attention network (VAN), and increased between-network FC in Dorsal Attention Network (DAN)-VAN, DAN-SMN between the RW state and after 24 h of total SD. After acupuncture at HT7, the large-scale brain network results showed decreased between-network FC in DAN-VAN and increased between-network FC in SMN-VAN. Conclusion Acupuncture could widely modulate extensive brain networks and reverse the specific between-network FC. The altered FC after acupuncture at HT7 may provide new evidence to interpret neuroimaging mechanisms of the acupuncture effect on acute SD.
Collapse
Affiliation(s)
- Yanzhe Ning
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sitong Feng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hao Yao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhengtian Feng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinzi Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Linrui Dong
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- *Correspondence: Hongxiao Jia
| |
Collapse
|
9
|
Dong X, Yin T, Yu S, He Z, Chen Y, Ma P, Qu Y, Yin S, Liu X, Zhang T, Huang L, Lu J, Gong Q, Zeng F. Neural Responses of Acupuncture for Treating Functional Dyspepsia: An fMRI Study. Front Neurosci 2022; 16:819310. [PMID: 35585920 PMCID: PMC9108289 DOI: 10.3389/fnins.2022.819310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
Different acupoints exhibiting similar therapeutic effects are a common phenomenon in acupuncture clinical practice. However, the mechanism underlying this phenomenon remains unclear. This study aimed to investigate the similarities and differences in cerebral activities elicited through stimulation of CV12 and ST36, the two most commonly used acupoints, in the treatment of gastrointestinal diseases, so as to partly explore the mechanism of the different acupoints with similar effects. Thirty-eight eligible functional dyspepsia (FD) patients were randomly assigned into either group A (CV12 group) or group B (ST36 group). Each patient received five acupuncture treatments per week for 4 weeks. The Symptom Index of Dyspepsia (SID), Nepean Dyspepsia Symptom Index (NDSI), and Nepean Dyspepsia Life Quality Index (NDLQI) were used to assess treatment efficacy. Functional MRI (fMRI) scans were performed to detect cerebral activity changes at baseline and at the end of the treatment. The results demonstrated that (1) improvements in NDSI, SID, and NDLQI were found in both group A and group B (p < 0.05). However, there were no significant differences in the improvements of the SID, NDSI, and NDLQI scores between group A and group B (p > 0.05); (2) all FD patients showed significantly increased amplitude of low-frequency fluctuation (ALFF) in the left postcentral gyrus after acupuncture treatment, and the changes of ALFF in the left postcentral gyrus were significantly related to the improvements of SID scores (r = 0.358, p = 0.041); and (3) needling at CV12 significantly decreased the resting-state functional connectivity (rsFC) between the left postcentral gyrus and angular gyrus, caudate, middle frontal gyrus (MFG), and cerebellum, while needling at ST36 significantly increased the rsFC between the left postcentral gyrus with the precuneus, superior frontal gyrus (SFG), and MFG. The results indicated that CV12 and ST36 shared similar therapeutic effects for dyspepsia, with common modulation on the activity of the postcentral gyrus in FD patients. However, the modulatory pattern on the functional connectivity of the postcentral gyrus was different. Namely, stimulation of CV12 primarily involved the postcentral gyrus–reward network, while stimulation of ST36 primarily involved the postcentral gyrus–default mode network circuitry.
Collapse
Affiliation(s)
- Xiaohui Dong
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaoxuan He
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- International Education School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peihong Ma
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Qu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Yin
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Liu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Zhang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuyang Huang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Lu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Zeng
- Acupuncture and Brain Science Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fang Zeng,
| |
Collapse
|