1
|
Jaja PT, Yuri Y, Sufianov A. Early clinico-radiological outcomes following neuroendoscopic cysto-cisternostomy for middle cranial fossa arachnoid cysts: a prospective cohort study with illustrative cases. Childs Nerv Syst 2024; 40:4033-4046. [PMID: 39269464 DOI: 10.1007/s00381-024-06596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The dysmorphogenetic arachnoid cysts' pathomechanism is most favoured, and about 50% occur as middle cranial fossa cysts (MCFAC). Still being rare, management options are yet evolving. We described the clinico-radiological features, management and early outcomes of participants with MCFAC in our service. METHODS This prospective cohort study involved 29 pediatric participants recruited (from electronic health records, using ICD G93.0 D016080 for arachnoid cysts) between 01/01/2023 and 31/06/2023, following informed consent according to the ethical approval. All participants had neuro-imaging confirmed MCFAC. Baseline and follow-up data were retrieved and analyzed using summary (mean, standard deviation) and inferential (ANOVA, t-test) statistics. RESULTS They were averagely aged 6.2 ± 4.48 years and were mostly males (89.7%). 24.1% were asymptomatic. The commonest symptoms (n = 38) were headaches (23.7%), developmental delays (15.8%), eye complaints (15.8%) and cephalomegaly (7.9%). They were predominantly left-sided (89.7%). Galassi (G) 3 lesions were less (24.1%), with G2 and G1 lesions evenly sharing the rest. The average cyst volume was 58.4 ± 80.83cm3; there were significant differences (F = 4.682; p = 0.018) between the average volumes for G1 (14.4 ± 22.42cm3), G2 (61.7 ± 89.92cm3) and G3 (122.5 ± 94.37cm3) lesions. 44.8% of the participants had rigid-endoscopic cysto-cisternotomy (all between the ICA and oculomotor nerve into the interpeduncular cistern, using ventriculostomy forceps); including all G3, 50% of G2 and no G1 (had serial clinico-radiological observation) lesion. The average pre- (117.42cm3) and post-operative (53.48cm3) cyst volumes showed significant (t = - 2.797, p = 0.021) reductions. CONCLUSION Middle cranial fossa arachnoid cysts occur predominantly amongst males, in middle childhood and left-sided. The treatment-related patient series are largely symptomatic, unlike the largely asymptomatic, screening-related series. Higher Galassi grade lesions presented with progressively, significantly larger cyst volumes and higher likelihoods of surgery. The average post-operative cyst volume at follow-up averagely showed almost 60% reduction from the pre-operative. All participants reported clinical remission.
Collapse
Affiliation(s)
- Promise Tamunoipiriala Jaja
- Department of Neurosurgery, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- Directorate of Medical and Dental Services, Rivers State Hospitals' Management Board, Port Harcourt, Nigeria.
- Department of Paediatric Neurosurgery, Federal Centre of Neurosurgery, Tyumen, Russian Federation.
| | - Yakimov Yuri
- Department of Neurosurgery, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Department of Paediatric Neurosurgery, Federal Centre of Neurosurgery, Tyumen, Russian Federation
| | - Albert Sufianov
- Department of Neurosurgery, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Department of Paediatric Neurosurgery, Federal Centre of Neurosurgery, Tyumen, Russian Federation
- Department of Neurosurgery, People's Friendship University, Moscow, Russian Federation
| |
Collapse
|
2
|
Chen JC, Dhuliyawalla A, Garcia R, Robledo A, Woods JE, Alrashdan F, O'Leary S, Husain A, Price A, Crosby S, Felicella MM, Wakhloo AK, Karas P, Provenza N, Goodman W, Sheth SA, Sheth SA, Robinson JT, Kan P. Endocisternal interfaces for minimally invasive neural stimulation and recording of the brain and spinal cord. Nat Biomed Eng 2024:10.1038/s41551-024-01281-9. [PMID: 39528629 DOI: 10.1038/s41551-024-01281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Minimally invasive neural interfaces can be used to diagnose, manage and treat many disorders, with reduced risks of surgical complications. However, endovascular probes lack access to key cortical, subcortical and spinal targets, and are not typically explantable after endothelialization. Here we report the development and testing, in sheep, of endocisternal neural interfaces that approach brain and spinal cord targets through inner and outer spaces filled with cerebrospinal fluid. Thus, the interfaces gain access to the entire brain convexity, to deep brain structures within the ventricles and to the spinal cord from the spinal subarachnoid space. We combined an endocisternal neural interface with wireless miniature magnetoelectrically powered bioelectronics so that it can be freely navigated percutaneously from the spinal space to the cranial subarachnoid space, and from the cranial subarachnoid space to the ventricles. In sheep, we show recording and stimulation functions, as well as repositioning of the flexible electrodes and explantation of the interface after chronic implantation. Minimally invasive endocisternal bioelectronics may enable chronic and transient therapies, particularly for stroke rehabilitation and epilepsy monitoring.
Collapse
Affiliation(s)
- Joshua C Chen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Abdeali Dhuliyawalla
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Robert Garcia
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Joshua E Woods
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Sean O'Leary
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Adam Husain
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Anthony Price
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott Crosby
- Neuromonitoring Associates LLC, Las Vegas, NV, USA
| | | | - Ajay K Wakhloo
- Department of Radiology, TUFTS University School of Medicine, Boston, MA, USA
- Deinde Medical, Miramar, FL, USA
| | - Patrick Karas
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Wayne Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sunil A Sheth
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Jacob T Robinson
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| | - Peter Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Li X, Wang S, Zhang D, Feng Y, Liu Y, Yu W, Cui L, Harkany T, Verkhratsky A, Xia M, Li B. The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs. Proc Natl Acad Sci U S A 2024; 121:e2400024121. [PMID: 39485799 PMCID: PMC11551422 DOI: 10.1073/pnas.2400024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
Mechanisms controlling the movement of the cerebrospinal fluid (CSF) toward peripheral nerves are poorly characterized. We found that, in addition to the foramina Magendie and Luschka for CSF flow toward the subarachnoid space and glymphatic system, CSF outflow could also occur along periaxonal spaces (termed "PAS pathway") from the spinal cord to peripheral organs, such as the liver and pancreas. When interrogating the latter route, we found that serotonin, acting through 5-HT2B receptors expressed in ependymocytes that line the central canal, triggered Ca2+ signals to induce polymerization of F-actin, a cytoskeletal protein, to reduce the volume of ependymal cells. This paralleled an increased rate of PAS-mediated CSF redistribution toward peripheral organs. In the liver, CSF was received by hepatic stellate cells. CSF efflux toward peripheral organs through the PAS pathway represents a mechanism dynamically connecting the nervous system with the periphery. Our findings are compatible with the traditional theory of CSF efflux into the glymphatic system to clear metabolic waste from the cerebral parenchyma. Thus, we extend the knowledge of CSF flow and expand the understanding of connectivity between the CNS and peripheral organs.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Yuliang Feng
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna1090, Austria
- Department of Neuroscience, Biomedicum, Karolinska Institutet, Solna17165, Sweden
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Faculty of Biology, Medicine and Health, The University of Manchester, ManchesterM13 9PL, United Kingdom
- Department of Neurosciences, University of the Basque Country, Leioa48940, Bizkaia, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, VilniusLT-01102, Lithuania
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang110002, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| |
Collapse
|
4
|
Liu Y, Feng X, Wang J, Li M. Neuroprotective Effect of Ganoderic Acid against Focal Ischemic Stroke Induced by Middle Cerebral Artery Occlusion in the Rats via Suppression of Oxidative Stress and Inflammation. DOKL BIOCHEM BIOPHYS 2024; 518:361-371. [PMID: 39023671 DOI: 10.1134/s1607672924600313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Stroke is recognized as a leading cause of disability and mortality worldwide, posing a significant challenge, particularly in developing countries. The current study aimed to evaluate the neuroprotective effect of Ganoderic acid (GA) against focal ischemic stroke in rats. MATERIAL AND METHODS Swiss Wistar rats were used for the current study. The rats were subjected to middle cerebral artery occlusion (MCAO) to simulate transient focal ischemia, followed by reperfusion. Various neurological parameters, including infarct size, neurological deficit score, brain water content, Evans blue leakage, nitric oxide (NO), inducible nitric oxide synthase (iNOS), lactate dehydrogenase (LDH), antioxidant levels, inflammatory cytokines, apoptosis markers, inflammatory parameters, and matrix metalloproteinases (MMP) levels, were estimated. Additionally, mRNA expressions were evaluated in the brain tissue. RESULTS Dose dependently treatment of GA significantly (P < 0.001) suppressed the infarct size, neurological deflects score, brain water, evans blue leakage, NO, iNOS, LDH, C-X-C chemokine receptor type 4 (CXCR-4), monocyte chemoattractant protein-1 (MCP-1), S100 calcium-binding protein B (S-100β) and K+-Cl- cotransporter 1 (KCC1) positive cells. GA altered the level of oxidative stress parameters like Total antioxidant capacity (T-AOC), 8-hydroxy-2'-deoxyguanosine (8-OhdG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), malonaldehyde (MDA); cytokines viz., tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-1β, IL-6, IL-9, IL-10; inflammatory parameters such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin (PGE2), Nuclear factor kappa B (NF-κB); apoptosis parameters like B-cell leukemia/lymphoma 2 protein (Bcl-2), Bcl-2-associated protein x (Bax), Caspase-3; matrix metallopeptidase (MMP) parameters like MMP-2, MMP-3, and MMP-9, respectively. GA remarkably suppressed the mRNA expression of TRL-4, Syndecan-1, CSF, Aquaporin-1, OCT3, and RFX1. CONCLUSION Ganoderic acid exhibited the protection against the cerebral ischemia reperfusion via multiple mechanism.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, Yibin No. 4 People's Hospital, Yibin Sichuan, China.
| | - Xuemei Feng
- Department of Neurology, Yibin No. 4 People's Hospital, Yibin Sichuan, China
| | - Juan Wang
- Department of Neurology, Yibin No. 4 People's Hospital, Yibin Sichuan, China
| | - Mingfen Li
- Department of Neurology, Yibin No. 4 People's Hospital, Yibin Sichuan, China
| |
Collapse
|
5
|
Sadanandan J, Sathyanesan M, Newton SS. Aging alters the expression of trophic factors and tight junction proteins in the mouse choroid plexus. Fluids Barriers CNS 2024; 21:77. [PMID: 39334352 PMCID: PMC11438291 DOI: 10.1186/s12987-024-00574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The choroid plexus (CP) is an understudied tissue in the central nervous system and is primarily implicated in cerebrospinal fluid (CSF) production. CP also produces numerous neurotrophic factors (NTF) which circulate to different brain regions. Regulation of NTFs in the CP during natural aging is largely unknown. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and the water channel protein Aquaporin (AQP1). METHODS Male and female mice were used for our study. Age-related transcriptional changes were analyzed using quantitative PCR at three different time points: mature adult, middle-aged, and aged. Transcriptional changes during aging were further confirmed with digital droplet PCR. Additionally, we used immunohistochemical analysis (IHC) for the evaluation of in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP, and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, Plectin. RESULTS Aging significantly altered NTF gene expression in the CP. Brain-derived neurotrophic factor (BDNF), Midkine (MDK), VGF, Insulin-like growth factor (IGF1), IGF2, Klotho (KL), Erythropoietin (EPO), and its receptor (EPOR) were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression was unchanged in the aged CP, while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2 and CLAUDIN5 were reduced in aged mice. CONCLUSIONS Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
6
|
Cecchi R, Camatti J, Schirripa ML, Ragona M, Pinelli S, Cucurachi N. Postmortem biochemistry of GFAP, NSE and S100B in cerebrospinal fluid and in vitreous humor for estimation of postmortem interval: a pilot study. Forensic Sci Med Pathol 2024:10.1007/s12024-024-00874-9. [PMID: 39147943 DOI: 10.1007/s12024-024-00874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Postmortem interval (PMI) is a challenging issue in forensic practice. Although postmortem biomarkers of traumatic brain injury (TBI) are recognised as an emerging resource for PMI estimation, their role remains controversial. This study aims to evaluate postmortem concentrations of three TBI biomarkers (GFAP, NSE and S100B) in two matrices (cerebrospinal fluid and vitreous humor), in order to find out if these markers could be adopted in PMI estimation. Thirty-five deceased individuals with known PMI who underwent forensic autopsy at the University of Parma were examined. Matrices were collected during autopsy, then biomarker concentrations were determined through the enzyme-linked immunosorbent assay. Statistical significance of the data in relation to PMI was studied. The correlation of biomarkers with PMI, examined with samples divided into six groups according to the number of days elapsed since death, was not statistically significant, although S100B in cerebrospinal fluid showed an increasing trend in cases from 1 to 5 days of PMI. Comparison between cases with 1 day of PMI and those with 2 or more days of PMI showed a statistically significant correlation for GFAP and NSE in cerebrospinal fluid. GFAP and NSE in cerebrospinal fluid represent appropriate biomarkers in PMI estimation to distinguish cases with one day of PMI from those with two or more days of PMI. The current study was limited by the scarcity of the cohort and the narrow spectrum of cases. Further research is needed to confirm these observations.
Collapse
|
7
|
Keles A, Ozisik PA, Algin O, Celebi FV, Bendechache M. Decoding pulsatile patterns of cerebrospinal fluid dynamics through enhancing interpretability in machine learning. Sci Rep 2024; 14:17854. [PMID: 39090141 PMCID: PMC11294568 DOI: 10.1038/s41598-024-67928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Analyses of complex behaviors of Cerebrospinal Fluid (CSF) have become increasingly important in diseases diagnosis. The changes of the phase-contrast magnetic resonance imaging (PC-MRI) signal formed by the velocity of flowing CSF are represented as a set of velocity-encoded images or maps, which can be thought of as signal data in the context of medical imaging, enabling the evaluation of pulsatile patterns throughout a cardiac cycle. However, automatic segmentation of the CSF region in a PC-MRI image is challenging, and implementing an explained ML method using pulsatile data as a feature remains unexplored. This paper presents lightweight machine learning (ML) algorithms to perform CSF lumen segmentation in spinal, utilizing sets of velocity-encoded images or maps as a feature. The Dataset contains 57 PC-MRI slabs by 3T MRI scanner from control and idiopathic scoliosis participants are involved to collect data. The ML models are trained with 2176 time series images. Different cardiac periods image (frame) numbers of PC-MRIs are interpolated in the preprocessing step to align to features of equal size. The fivefold cross-validation procedure is used to estimate the success of the ML models. Additionally, the study focusses on enhancing the interpretability of the highest-accuracy eXtreme gradient boosting (XGB) model by applying the shapley additive explanations (SHAP) technique. The XGB algorithm presented its highest accuracy, with an average fivefold accuracy of 0.99% precision, 0.95% recall, and 0.97% F1 score. We evaluated the significance of each pulsatile feature's contribution to predictions, offering a more profound understanding of the model's behavior in distinguishing CSF lumen pixels with SHAP. Introducing a novel approach in the field, develop ML models offer comprehension into feature extraction and selection from PC-MRI pulsatile data. Moreover, the explained ML model offers novel and valuable insights to domain experts, contributing to an enhanced scholarly understanding of CSF dynamics.
Collapse
Affiliation(s)
- Ayse Keles
- Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Ankara Medipol University, Ankara, Turkey.
| | - Pinar Akdemir Ozisik
- Department of Neurosurgery, School of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
- Ankara City Hospital, Orthopedics and Neurology Tower, Bilkent, 06800, Ankara, Turkey
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara, Turkey
- National MR Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Radiology Department, Medical Faculty, Ankara University, Ankara, Turkey
| | - Fatih Vehbi Celebi
- Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, 06010, Ayvalı, Keçiören, Ankara, Turkey
| | - Malika Bendechache
- Lero and ADAPT Research Centres, School of Computer Science, University of Galway, Galway, Ireland
| |
Collapse
|
8
|
Yan Y, Cho AN. Human Brain In Vitro Model for Pathogen Infection-Related Neurodegeneration Study. Int J Mol Sci 2024; 25:6522. [PMID: 38928228 PMCID: PMC11204318 DOI: 10.3390/ijms25126522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in stem cell biology and tissue engineering have revolutionized the field of neurodegeneration research by enabling the development of sophisticated in vitro human brain models. These models, including 2D monolayer cultures, 3D organoids, organ-on-chips, and bioengineered 3D tissue models, aim to recapitulate the cellular diversity, structural organization, and functional properties of the native human brain. This review highlights how these in vitro brain models have been used to investigate the effects of various pathogens, including viruses, bacteria, fungi, and parasites infection, particularly in the human brain cand their subsequent impacts on neurodegenerative diseases. Traditional studies have demonstrated the susceptibility of different 2D brain cell types to infection, elucidated the mechanisms underlying pathogen-induced neuroinflammation, and identified potential therapeutic targets. Therefore, current methodological improvement brought the technology of 3D models to overcome the challenges of 2D cells, such as the limited cellular diversity, incomplete microenvironment, and lack of morphological structures by highlighting the need for further technological advancements. This review underscored the significance of in vitro human brain cell from 2D monolayer to bioengineered 3D tissue model for elucidating the intricate dynamics for pathogen infection modeling. These in vitro human brain cell enabled researchers to unravel human specific mechanisms underlying various pathogen infections such as SARS-CoV-2 to alter blood-brain-barrier function and Toxoplasma gondii impacting neural cell morphology and its function. Ultimately, these in vitro human brain models hold promise as personalized platforms for development of drug compound, gene therapy, and vaccine. Overall, we discussed the recent progress in in vitro human brain models, their applications in studying pathogen infection-related neurodegeneration, and future directions.
Collapse
Affiliation(s)
- Yuwei Yan
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia;
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ann-Na Cho
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia;
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
9
|
Overgaard Wichmann T, Hedegaard Højsager M, Hasager Damkier H. Water channels in the brain and spinal cord-overview of the role of aquaporins in traumatic brain injury and traumatic spinal cord injury. Front Cell Neurosci 2024; 18:1414662. [PMID: 38818518 PMCID: PMC11137310 DOI: 10.3389/fncel.2024.1414662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Knowledge about the mechanisms underlying the fluid flow in the brain and spinal cord is essential for discovering the mechanisms implicated in the pathophysiology of central nervous system diseases. During recent years, research has highlighted the complexity of the fluid flow movement in the brain through a glymphatic system and a lymphatic network. Less is known about these pathways in the spinal cord. An important aspect of fluid flow movement through the glymphatic pathway is the role of water channels, especially aquaporin 1 and 4. This review provides an overview of the role of these aquaporins in brain and spinal cord, and give a short introduction to the fluid flow in brain and spinal cord during in the healthy brain and spinal cord as well as during traumatic brain and spinal cord injury. Finally, this review gives an overview of the current knowledge about the role of aquaporins in traumatic brain and spinal cord injury, highlighting some of the complexities and knowledge gaps in the field.
Collapse
|
10
|
Kahle KT, Klinge PM, Koschnitzky JE, Kulkarni AV, MacAulay N, Robinson S, Schiff SJ, Strahle JM. Paediatric hydrocephalus. Nat Rev Dis Primers 2024; 10:35. [PMID: 38755194 DOI: 10.1038/s41572-024-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Hydrocephalus is classically considered as a failure of cerebrospinal fluid (CSF) homeostasis that results in the active expansion of the cerebral ventricles. Infants with hydrocephalus can present with progressive increases in head circumference whereas older children often present with signs and symptoms of elevated intracranial pressure. Congenital hydrocephalus is present at or near birth and some cases have been linked to gene mutations that disrupt brain morphogenesis and alter the biomechanics of the CSF-brain interface. Acquired hydrocephalus can develop at any time after birth, is often caused by central nervous system infection or haemorrhage and has been associated with blockage of CSF pathways and inflammation-dependent dysregulation of CSF secretion and clearance. Treatments for hydrocephalus mainly include surgical CSF shunting or endoscopic third ventriculostomy with or without choroid plexus cauterization. In utero treatment of fetal hydrocephalus is possible via surgical closure of associated neural tube defects. Long-term outcomes for children with hydrocephalus vary widely and depend on intrinsic (genetic) and extrinsic factors. Advances in genomics, brain imaging and other technologies are beginning to refine the definition of hydrocephalus, increase precision of prognostication and identify nonsurgical treatment strategies.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Neurosurgery and Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| | - Petra M Klinge
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jenna E Koschnitzky
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhaya V Kulkarni
- Division of Paediatric Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Shenandoah Robinson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Paediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
11
|
Olegário RL, Nóbrega OT, Camargos EF. The newly discovered glymphatic system: the missing link between physical exercise and brain health? Front Integr Neurosci 2024; 18:1349563. [PMID: 38690084 PMCID: PMC11058641 DOI: 10.3389/fnint.2024.1349563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Dementias are responsible for the most frequent neurodegenerative diseases and the seventh leading cause of death worldwide. As a result, there is a growing effort by the neuroscientific community to understand the physiopathology of neurodegenerative diseases, including how to alleviate the effects of the cognitive decline by means of non-pharmacological therapies (e.g., physical exercise). Studies have shown that exercise can improve aspects of brain health related to cognition. However, there still needs to be more knowledge regarding the mechanisms controlling these relationships, and a newly discovered cleansing system in the brain, named the glymphatic system, can be the missing link in this mechanism. The objective of this paper is to review recent findings regarding the potential impacts of physical exercise on the glymphatic system and its implications for the onset of neurodegenerative diseases. Additionally, considering the close interplay between exercise and sleep quality, we aim to explore how sleep patterns may intersect with exercise-induced effects on glymphatic function, further elucidating the complex relationship between lifestyle factors and brain health.
Collapse
Affiliation(s)
- Raphael Lopes Olegário
- Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
- Department of Clinical Medicine, Geriatric Medicine Centre, Brasília University Hospital, Brasília, Brazil
| | - Otávio Toledo Nóbrega
- Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
- Department of Clinical Medicine, Geriatric Medicine Centre, Brasília University Hospital, Brasília, Brazil
| | - Einstein Francisco Camargos
- Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
- Department of Clinical Medicine, Geriatric Medicine Centre, Brasília University Hospital, Brasília, Brazil
| |
Collapse
|
12
|
Koh GY, McDonald DM. Meningeal lymphatics can influence stroke outcome. J Exp Med 2024; 221:e20232305. [PMID: 38442271 PMCID: PMC10913810 DOI: 10.1084/jem.20232305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Meningeal lymphatics are conduits for cerebrospinal fluid drainage to lymphatics and lymph nodes in the neck. In this issue of JEM, Boisserand et al. (https://doi.org/10.1084/jem.20221983) provide evidence that expansion of meningeal lymphatics protects against ischemic stroke.
Collapse
Affiliation(s)
- Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Korea
| | - Donald M. McDonald
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Sadanandan J, Sathyanesan M, Newton SS. Regulation of trophic factors in the choroid plexus of aged mice. RESEARCH SQUARE 2024:rs.3.rs-4123786. [PMID: 38562722 PMCID: PMC10984084 DOI: 10.21203/rs.3.rs-4123786/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The choroid plexus (CP) is an understudied tissue in the central nervous system (CNS), primarily implicated in cerebrospinal fluid (CSF) production. Additionally, CP produces numerous neurotrophic factors (NTF), which circulate to different regions of the brain. Regulation of NTF in the CP during natural aging has yet to be discovered. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and water channel protein Aquaporin (AQP1). Methods We used male and female mice for our study. We analyzed neurotrophic factor gene expression patterns using quantitative and digital droplet PCR at three different time points: mature adult, middle-aged, and aged. Additionally, we used immunohistochemical analysis (IHC) to evaluate in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, plectin. Results Aging significantly altered the NTF's gene expression in the CP Brain-derived neurotrophic factor (BDNF), Midkine, VGF, Insulin-like growth factor (IGF1), IGF2, klotho, Erythropoietin, and its receptor were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression is unchanged in the aged CP while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2, and CLAUDIN5 were reduced in aged mice. Conclusions Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.
Collapse
|
14
|
Faizan M, Sachan N, Verma O, Sarkar A, Rawat N, Pratap Singh M. Cerebrospinal fluid protein biomarkers in Parkinson's disease. Clin Chim Acta 2024; 556:117848. [PMID: 38417781 DOI: 10.1016/j.cca.2024.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Proteomic profiling is an effective way to identify biomarkers for Parkinson's disease (PD). Cerebrospinal fluid (CSF) has direct connectivity with the brain and could be a source of finding biomarkers and their clinical implications. Comparative proteomic profiling has shown that a group of differentially displayed proteins exist. The studies performed using conventional and classical tools also supported the occurrence of these proteins. Many studies have highlighted the potential of CSF proteomic profiling for biomarker identification and their clinical applications. Some of these proteins are useful for disease diagnosis and prediction. Proteomic profiling of CSF also has immense potential to distinguish PD from similar neurodegenerative disorders. A few protein biomarkers help in fundamental knowledge generation and clinical interpretation. However, the specific biomarker of PD is not yet known. The use of proteomic approaches in clinical settings is also rare. A large-scale, multi-centric, multi-population and multi-continental study using multiple proteomic tools is warranted. Such a study can provide valuable, comprehensive and reliable information for a better understanding of PD and the development of specific biomarkers. The current article sheds light on the role of CSF proteomic profiling in identifying biomarkers of PD and their clinical implications. The article also explains the achievements, obstacles and hopes for future directions of this approach.
Collapse
Affiliation(s)
- Mohd Faizan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Nidhi Sachan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Oyashvi Verma
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Alika Sarkar
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Neeraj Rawat
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Capacity Building and Knowledge Services, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
15
|
Pan G, Jiang Y, Zhang W, Zhang X, Wang L, Cheng W. Identification of Parkinson's disease subtypes with distinct brain atrophy progression and its association with clinical progression. PSYCHORADIOLOGY 2024; 4:kkae002. [PMID: 38666137 PMCID: PMC10953620 DOI: 10.1093/psyrad/kkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/23/2024] [Indexed: 04/28/2024]
Abstract
Background Parkinson's disease (PD) patients suffer from progressive gray matter volume (GMV) loss, but whether distinct patterns of atrophy progression exist within PD are still unclear. Objective This study aims to identify PD subtypes with different rates of GMV loss and assess their association with clinical progression. Methods This study included 107 PD patients (mean age: 60.06 ± 9.98 years, 70.09% male) with baseline and ≥ 3-year follow-up structural MRI scans. A linear mixed-effects model was employed to assess the rates of regional GMV loss. Hierarchical cluster analysis was conducted to explore potential subtypes based on individual rates of GMV loss. Clinical score changes were then compared across these subtypes. Results Two PD subtypes were identified based on brain atrophy rates. Subtype 1 (n = 63) showed moderate atrophy, notably in the prefrontal and lateral temporal lobes, while Subtype 2 (n = 44) had faster atrophy across the brain, particularly in the lateral temporal region. Furthermore, subtype 2 exhibited faster deterioration in non-motor (MDS-UPDRS-Part Ⅰ, β = 1.26 ± 0.18, P = 0.016) and motor (MDS-UPDRS-Part Ⅱ, β = 1.34 ± 0.20, P = 0.017) symptoms, autonomic dysfunction (SCOPA-AUT, β = 1.15 ± 0.22, P = 0.043), memory (HVLT-Retention, β = -0.02 ± 0.01, P = 0.016) and depression (GDS, β = 0.26 ± 0.083, P = 0.019) compared to subtype 1. Conclusion The study has identified two PD subtypes with distinct patterns of atrophy progression and clinical progression, which may have implications for developing personalized treatment strategies.
Collapse
Affiliation(s)
- Guoqing Pan
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Xuejuan Zhang
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua 321004, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai 200032, China
| |
Collapse
|
16
|
Radoszkiewicz K, Bzinkowska A, Chodkowska M, Rybkowska P, Sypecka M, Zembrzuska-Kaska I, Sarnowska A. Deciphering the impact of cerebrospinal fluid on stem cell fate as a new mechanism to enhance clinical therapy development. Front Neurosci 2024; 17:1332751. [PMID: 38282622 PMCID: PMC10811009 DOI: 10.3389/fnins.2023.1332751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neural stem cells (NSCs) hold a very significant promise as candidates for cell therapy due to their robust neuroprotective and regenerative properties. Preclinical studies using NSCs have shown enough encouraging results to perform deeper investigations into more potential clinical applications. Nevertheless, our knowledge regarding neurogenesis and its underlying mechanisms remains incomplete. To understand them better, it seems necessary to characterize all components of neural stem cell niche and discover their role in physiology and pathology. Using NSCs in vivo brings challenges including limited cell survival and still inadequate integration within host tissue. Identifying overlooked factors that might influence these outcomes becomes pivotal. In this review, we take a deeper examination of the influence of a fundamental element that is present in the brain, the cerebrospinal fluid (CSF), which still remains relatively unexplored. Its role in neurogenesis could be instrumental to help find novel therapeutic solutions for neurological disorders, eventually advancing our knowledge on central nervous system (CNS) regeneration and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Tian M, Ma Z, Yang GZ. Micro/nanosystems for controllable drug delivery to the brain. Innovation (N Y) 2024; 5:100548. [PMID: 38161522 PMCID: PMC10757293 DOI: 10.1016/j.xinn.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Kojima R, Paslawski W, Lyu G, Arenas E, Zhang X, Svenningsson P. Secretome Analyses Identify FKBP4 as a GBA1-Associated Protein in CSF and iPS Cells from Parkinson's Disease Patients with GBA1 Mutations. Int J Mol Sci 2024; 25:683. [PMID: 38203854 PMCID: PMC10779269 DOI: 10.3390/ijms25010683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Mutations in the GBA1 gene increase the risk of developing Parkinson's disease (PD). However, most carriers of GBA1 mutations do not develop PD throughout their lives. The mechanisms of how GBA1 mutations contribute to PD pathogenesis remain unclear. Cerebrospinal fluid (CSF) is used for detecting pathological conditions of diseases, providing insights into the molecular mechanisms underlying neurodegenerative disorders. In this study, we utilized the proximity extension assay to examine the levels of metabolism-linked protein in the CSF from 17 PD patients carrying GBA1 mutations (GBA1-PD) and 17 idiopathic PD (iPD). The analysis of CSF secretome in GBA1-PD identified 11 significantly altered proteins, namely FKBP4, THOP1, GLRX, TXNDC5, GAL, SEMA3F, CRKL, APLP1, LRP11, CD164, and NPTXR. To investigate GBA1-associated CSF changes attributed to specific neuronal subtypes responsible for PD, we analyzed the cell culture supernatant from GBA1-PD-induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neurons. The secretome analysis of GBA1-PD iPSC-derived mDA neurons revealed that five differently regulated proteins overlapped with those identified in the CSF analysis: FKBP4, THOP1, GLRX, GAL, and CRKL. Reduced intracellular level of the top hit, FKPB4, was confirmed via Western Blot. In conclusion, our findings identify significantly altered CSF GBA1-PD-associated proteins with FKPB4 being firmly attributed to mDA neurons.
Collapse
Affiliation(s)
- Rika Kojima
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Guochang Lyu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| |
Collapse
|
19
|
Dean B, Duce J, Li QX, Masters CL, Scarr E. Lower levels of soluble β-amyloid precursor protein, but not β-amyloid, in the frontal cortex in schizophrenia. Psychiatry Res 2024; 331:115656. [PMID: 38071879 DOI: 10.1016/j.psychres.2023.115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
We identified a sub-group (25%) of people with schizophrenia (muscarinic receptor deficit schizophrenia (MRDS)) that are characterised because of markedly lower levels of cortical muscarinic M1 receptors (CHRM1) compared to most people with the disorder (non-MRDS). Notably, bioinformatic analyses of our cortical gene expression data shows a disturbance in the homeostasis of a biochemical pathway that regulates levels of CHRM1. A step in this pathway is the processing of β-amyloid precursor protein (APP) and therefore we postulated there would be altered levels of APP in the frontal cortex from people with MRDS. Here we measure levels of CHRM1 using [3H]pirenzepine binding, soluble APP (sAPP) using Western blotting and amyloid beta peptides (Aβ1-40 and Aβ1-42) using ELISA in the frontal cortex (Brodmann's area 6: BA 6; MRDS = 14, non-MRDS = 14, controls = 14). We confirmed the MRDS cohort in this study had the expected low levels of [3H]pirenzepine binding. In addition, we showed that people with schizophrenia, independent of their sub-group status, had lower levels of sAPP compared to controls but did not have altered levels of Aβ1-40 or Aβ1-42. In conclusion, whilst changes in sAPP are not restricted to MRDS our data could indicate a role of APP, which is important in axonal and synaptic pruning, in the molecular pathology of the syndrome of schizophrenia.
Collapse
Affiliation(s)
- Brian Dean
- The Florey, Parkville, Victoria, Australia; The University of Melbourne of Melbourne Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - James Duce
- MSD Discovery Centre, 120 Moorgate, London, UK
| | - Qiao-Xin Li
- The Florey, Parkville, Victoria, Australia; The University of Melbourne of Melbourne Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey, Parkville, Victoria, Australia; The University of Melbourne of Melbourne Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Yoon JH, Jin H, Kim HJ, Hong SP, Yang MJ, Ahn JH, Kim YC, Seo J, Lee Y, McDonald DM, Davis MJ, Koh GY. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature 2024; 625:768-777. [PMID: 38200313 PMCID: PMC10808075 DOI: 10.1038/s41586-023-06899-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
Cerebrospinal fluid (CSF) in the subarachnoid space around the brain has long been known to drain through the lymphatics to cervical lymph nodes1-17, but the connections and regulation have been challenging to identify. Here, using fluorescent CSF tracers in Prox1-GFP lymphatic reporter mice18, we found that the nasopharyngeal lymphatic plexus is a major hub for CSF outflow to deep cervical lymph nodes. This plexus had unusual valves and short lymphangions but no smooth-muscle coverage, whereas downstream deep cervical lymphatics had typical semilunar valves, long lymphangions and smooth muscle coverage that transported CSF to the deep cervical lymph nodes. α-Adrenergic and nitric oxide signalling in the smooth muscle cells regulated CSF drainage through the transport properties of deep cervical lymphatics. During ageing, the nasopharyngeal lymphatic plexus atrophied, but deep cervical lymphatics were not similarly altered, and CSF outflow could still be increased by adrenergic or nitric oxide signalling. Single-cell analysis of gene expression in lymphatic endothelial cells of the nasopharyngeal plexus of aged mice revealed increased type I interferon signalling and other inflammatory cytokines. The importance of evidence for the nasopharyngeal lymphatic plexus functioning as a CSF outflow hub is highlighted by its regression during ageing. Yet, the ageing-resistant pharmacological activation of deep cervical lymphatic transport towards lymph nodes can still increase CSF outflow, offering an approach for augmenting CSF clearance in age-related neurological conditions in which greater efflux would be beneficial.
Collapse
Affiliation(s)
- Jin-Hui Yoon
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hokyung Jin
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jincheol Seo
- National Primates Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yongjeon Lee
- National Primates Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Donald M McDonald
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella LJ, Jackson HK, Moreira LR, Palacio PL, Hill AF, Quinn JF, Van Keuren‐Jensen KR, McFarland TJ, Palade J, Sribnick EA, Su H, Vekrellis K, Coyle B, Yang Y, Falcón‐Perez JM, Nieuwland R, Saugstad JA. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles 2024; 13:e12397. [PMID: 38158550 PMCID: PMC10756860 DOI: 10.1002/jev2.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Setty M. Magaña
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa, Avenida da RepúblicaOeirasPortugal
| | - John P. Nolan
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Laura J. Vella
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | - Hannah K. Jackson
- Department of PathologyUniversity of CambridgeCambridgeUK
- Exosis, Inc.Palm BeachFloridaUSA
| | - Lissette Retana Moreira
- Department of Parasitology, Faculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica, Central America
- Centro de Investigación en Enfermedades TropicalesUniversity of Costa RicaSan JoséCosta Rica, Central America
| | - Paola Loreto Palacio
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Joseph F. Quinn
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Portland VA Medical CenterPortlandOregonUSA
| | | | - Trevor J. McFarland
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Joanna Palade
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixArizonaUSA
| | - Eric A. Sribnick
- Department of NeurosurgeryNationwide Children's Hospital, The Ohio State UniversityColumbusOhioUSA
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | | | - Beth Coyle
- Children's Brain Tumour Research Centre, School of MedicineUniversity of Nottingham Biodiscovery Institute, University of NottinghamNottinghamNottinghamshireUK
| | - You Yang
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Juan M. Falcón‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | |
Collapse
|
22
|
Ligocki AP, Vinson AV, Yachnis AT, Dunn WA, Smith DE, Scott EA, Alvarez-Castanon JV, Montalvo DEB, Frisone OG, Brown GAJ, Pessa JE, Scott EW. Cerebrospinal Fluid Flow Extends to Peripheral Nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567884. [PMID: 38045235 PMCID: PMC10690169 DOI: 10.1101/2023.11.20.567884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cerebrospinal fluid (CSF) is an aqueous solution responsible for nutrient delivery and waste removal for the central nervous system (CNS). The three-layer meningeal coverings of the CNS support CSF flow. Peripheral nerves have an analogous three-layer covering consisting of the epineurium, perineurium, and endoneurium. Peripheral axons, located in the inner endoneurium, are bathed in "endoneurial fluid" similar to CSF but of undefined origin. CSF flow in the peripheral nervous system has not been demonstrated. Here we show CSF flow extends beyond the CNS to peripheral nerves in a contiguous flowing system. Utilizing gold nanoparticles, we identified that CSF is continuous with the endoneurial fluid and reveal the endoneurial space as the likely site of CSF flow in the periphery. Nanogold distribution along entire peripheral nerves and within their axoplasm suggests CSF plays a role in nutrient delivery and waste clearance, fundamental aspects of peripheral nerve health and disease. One Sentence Summary Cerebrospinal fluid unites the nervous system by extending beyond the central nervous system into peripheral nerves.
Collapse
|
23
|
Sengupta S, Vidwan J. Overlap and Differences in Migraine and Idiopathic Intracranial Hypertension. Curr Pain Headache Rep 2023; 27:653-662. [PMID: 37656318 DOI: 10.1007/s11916-023-01166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW Migraine and idiopathic intracranial hypertension (IIH) are increasingly encountered but remain enigmatic. This review compares the similarities and differences of the diagnostic criteria, pathophysiology, and risk factors for chronic migraine and IIH. RECENT FINDINGS While migraine and IIH are distinct diseases, both conditions are frequently found concurrently and may share a link. Increased intracranial pressure (ICP) in those with or without pre-existing migraine may present with migraine-like headaches and contribute to migraine chronification. Increased intracranial pressure may be a coincidental occurrence in patients with migraine and normalization of pressure does not always translate to headache improvement. Limited information is available regarding the standard of treatment for patients with chronic migraine and IIH without papilledema. There continues to be controversy over the normal range of cerebral spinal fluid (CSF) values. Recognizing the concurrence of both conditions advances our understanding of headache pathology and demonstrates a striking need for more research.
Collapse
Affiliation(s)
- Sweta Sengupta
- Department of Neurology, Duke University, 932 Morreene Road, Durham, 27705, NC, UK.
| | - Jaskiran Vidwan
- Department of Neurology, Duke University, 932 Morreene Road, Durham, 27705, NC, UK
| |
Collapse
|
24
|
Diaz PM, Leehans A, Ravishankar P, Daily A. Multiomic Approaches for Cancer Biomarker Discovery in Liquid Biopsies: Advances and Challenges. Biomark Insights 2023; 18:11772719231204508. [PMID: 37846373 PMCID: PMC10576933 DOI: 10.1177/11772719231204508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Cancer is a complex and heterogeneous disease that poses a significant threat to global health. Early diagnosis and treatment are critical for improving patient outcomes, and the use of liquid biopsies has emerged as a promising approach for cancer detection and monitoring. Traditionally, cancer diagnosis has relied on invasive tissue biopsies, the collection of which can prove challenging for patients and the results of which may not always provide accurate results due to tumor heterogeneity. Liquid biopsies have gained increasing attention as they provide a non-invasive and accessible source of cancer biomarkers, which can be used to diagnose cancer, monitor treatment response, and detect relapse. The integration of -omics technologies, such as proteomics, genomics, and metabolomics, has further enhanced the capabilities of liquid biopsies by introducing precision oncology and enabling the tailoring of treatment for individual patients based on their unique tumor biology. In this review, we will discuss the challenges and advances in the field of cancer liquid biopsies and the integration of -omics technologies for different types of liquid biopsies, including blood, tear, urine, sweat, saliva, and cerebrospinal fluid.
Collapse
Affiliation(s)
- Paola Monterroso Diaz
- Namida Lab Inc., Fayetteville, AR, USA
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, AR, USA
| | | | | | | |
Collapse
|
25
|
Lim J, Rhee S, Choi H, Lee J, Kuttappan S, Yves Nguyen TT, Choi S, Kim Y, Jeon NL. Engineering choroid plexus-on-a-chip with oscillatory flow for modeling brain metastasis. Mater Today Bio 2023; 22:100773. [PMID: 37664794 PMCID: PMC10474164 DOI: 10.1016/j.mtbio.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The human brain choroid plexus (ChP) is a highly organized secretory tissue with a complex vascular system and epithelial layers in the ventricles of the brain. The ChP is the body's principal source of cerebrospinal fluid (CSF); it also functions as a barrier to separate the blood from CSF, because the movement of CSF through the body is pulsatile in nature. Thus far, it has been challenging to recreate the specialized features and dynamics of the ChP in a physiologically relevant microenvironment. In this study, we recapitulated the ChP structure by developing a microfluidic chip in accordance with established design rules. Furthermore, we used image processing and analysis to mimic CSF flow dynamics within a rlcking system; we also used a hydrogel containing laminin to mimic brain extracellular matrix (ECM). Human ChP cells were cultured in the ChP-on-a-chip with in vivo-like CSF dynamic flow and an engineered ECM. The key ChP characteristics of capillaries, the epithelial layer, and secreted components were recreated in the adjusted microenvironment of our human ChP-on-a-chip. The drug screening capabilities of the device were observed through physiologically relevant drug responses from breast cancer cells that had spread in the ChP. ChP immune responses were also recapitulated in this device, as demonstrated by the motility and cytotoxic effects of macrophages, which are the most prevalent immune cells in the ChP. Our human ChP-on-a-chip will facilitate the elucidation of ChP pathophysiology and support the development of therapeutics to treat cancers that have metastasized into the ChP.
Collapse
Affiliation(s)
- Jungeun Lim
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
| | - Stephen Rhee
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Hyeri Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Jungseub Lee
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Shruthy Kuttappan
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, South Korea
| | - Tri Tho Yves Nguyen
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Sunbeen Choi
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Noo Li Jeon
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
26
|
Bangari DS, Lanigan LG, Cramer SD, Grieves JL, Meisner R, Rogers AB, Galbreath EJ, Bolon B. Toxicologic Neuropathology of Novel Biotherapeutics. Toxicol Pathol 2023; 51:414-431. [PMID: 38380881 DOI: 10.1177/01926233241230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - René Meisner
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | |
Collapse
|
27
|
Sanicola HW, Stewart CE, Luther P, Yabut K, Guthikonda B, Jordan JD, Alexander JS. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. PATHOPHYSIOLOGY 2023; 30:420-442. [PMID: 37755398 PMCID: PMC10536590 DOI: 10.3390/pathophysiology30030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke resulting from the rupture of an arterial vessel within the brain. Unlike other stroke types, SAH affects both young adults (mid-40s) and the geriatric population. Patients with SAH often experience significant neurological deficits, leading to a substantial societal burden in terms of lost potential years of life. This review provides a comprehensive overview of SAH, examining its development across different stages (early, intermediate, and late) and highlighting the pathophysiological and pathohistological processes specific to each phase. The clinical management of SAH is also explored, focusing on tailored treatments and interventions to address the unique pathological changes that occur during each stage. Additionally, the paper reviews current treatment modalities and pharmacological interventions based on the evolving guidelines provided by the American Heart Association (AHA). Recent advances in our understanding of SAH will facilitate clinicians' improved management of SAH to reduce the incidence of delayed cerebral ischemia in patients.
Collapse
Affiliation(s)
- Henry W. Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Caleb E. Stewart
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Patrick Luther
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Kevin Yabut
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
28
|
Mineiro R, Albuquerque T, Neves AR, Santos CRA, Costa D, Quintela T. The Role of Biological Rhythms in New Drug Formulations to Cross the Brain Barriers. Int J Mol Sci 2023; 24:12541. [PMID: 37628722 PMCID: PMC10454916 DOI: 10.3390/ijms241612541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
For brain protection, the blood-brain barrier and blood-cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood-brain barrier and in the blood-cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Raquel Neves
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília R. A. Santos
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
29
|
Nakamura N, Ushida T, Onoda A, Ueda K, Miura R, Suzuki T, Katsuki S, Mizutani H, Yoshida K, Tano S, Iitani Y, Imai K, Hayakawa M, Kajiyama H, Sato Y, Kotani T. Altered offspring neurodevelopment in an L-NAME-induced preeclampsia rat model. Front Pediatr 2023; 11:1168173. [PMID: 37520045 PMCID: PMC10373593 DOI: 10.3389/fped.2023.1168173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction To investigate the mechanism underlying the increased risk of subsequent neurodevelopmental disorders in children born to mothers with preeclampsia, we evaluated the neurodevelopment of offspring of a preeclampsia rat model induced by the administration of N-nitro-L-arginine methyl ester (L-NAME) and identified unique protein signatures in the offspring cerebrospinal fluid. Methods Pregnant rats received an intraperitoneal injection of L-NAME (250 mg/kg/day) during gestational days 15-20 to establish a preeclampsia model. Behavioral experiments (negative geotaxis, open-field, rotarod treadmill, and active avoidance tests), immunohistochemistry [anti-neuronal nuclei (NeuN) staining in the hippocampal dentate gyrus and cerebral cortex on postnatal day 70], and proteome analysis of the cerebrospinal fluid on postnatal day 5 were performed on male offspring. Results Offspring of the preeclampsia dam exhibited increased growth restriction at birth (52.5%), but showed postnatal catch-up growth on postnatal day 14. Several behavioral abnormalities including motor development and vestibular function (negative geotaxis test: p < 0.01) in the neonatal period; motor coordination and learning skills (rotarod treadmill test: p = 0.01); and memory skills (active avoidance test: p < 0.01) in the juvenile period were observed. NeuN-positive cells in preeclampsia rats were significantly reduced in both the hippocampal dentate gyrus and cerebral cortex (p < 0.01, p < 0.01, respectively). Among the 1270 proteins in the cerebrospinal fluid identified using liquid chromatography-tandem mass spectrometry, 32 were differentially expressed. Principal component analysis showed that most cerebrospinal fluid samples achieved clear separation between preeclampsia and control rats. Pathway analysis revealed that differentially expressed proteins were associated with endoplasmic reticulum translocation, Rab proteins, and ribosomal proteins, which are involved in various nervous system disorders including autism spectrum disorders, schizophrenia, and Alzheimer's disease. Conclusion The offspring of the L-NAME-induced preeclampsia model rats exhibited key features of neurodevelopmental abnormalities on behavioral and pathological examinations similar to humans. We found altered cerebrospinal fluid protein profiling in this preeclampsia rat, and the unique protein signatures related to endoplasmic reticulum translocation, Rab proteins, and ribosomal proteins may be associated with subsequent adverse neurodevelopment in the offspring.
Collapse
Affiliation(s)
- Noriyuki Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Obstetrics and Gynecology, Anjo Kosei Hospital, Aichi, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Atsuto Onoda
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Ryosuke Miura
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Satoru Katsuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Iitani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
30
|
Lele AV, Theard MA, Vavilala MS. Cerebrospinal fluid diversion devices and shunting procedures: a narrative review for the anesthesiologist. Int Anesthesiol Clin 2023; 61:29-36. [PMID: 37249174 DOI: 10.1097/aia.0000000000000399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Abhijit Vijay Lele
- Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
31
|
Kim JH, Yoo RE, Choi SH, Park SH. Non-invasive flow mapping of parasagittal meningeal lymphatics using 2D interslice flow saturation MRI. Fluids Barriers CNS 2023; 20:37. [PMID: 37237402 DOI: 10.1186/s12987-023-00446-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
The clearance pathways of brain waste products in humans are still under debate in part due to the lack of noninvasive imaging techniques for meningeal lymphatic vessels (mLVs). In this study, we propose a new noninvasive mLVs imaging technique based on an inter-slice blood perfusion MRI called alternate ascending/descending directional navigation (ALADDIN). ALADDIN with inversion recovery (IR) at single inversion time of 2300 ms (single-TI IR-ALADDIN) clearly demonstrated parasagittal mLVs around the human superior sagittal sinus (SSS) with better detectability and specificity than the previously suggested noninvasive imaging techniques. While in many studies it has been difficult to detect mLVs and confirm their signal source noninvasively, the detection of mLVs in this study was confirmed by their posterior to anterior flow direction and their velocities and morphological features, which were consistent with those from the literature. In addition, IR-ALADDIN was compared with contrast-enhanced black blood imaging to confirm the detection of mLVs and its similarity. For the quantification of flow velocity of mLVs, IR-ALADDIN was performed at three inversion times of 2000, 2300, and 2600 ms (three-TI IR-ALADDIN) for both a flow phantom and humans. For this preliminary result, the flow velocity of the dorsal mLVs in humans ranged between 2.2 and 2.7 mm/s. Overall, (i) the single-TI IR-ALADDIN can be used as a novel non-invasive method to visualize mLVs in the whole brain with scan time of ~ 17 min and (ii) the multi-TI IR-ALADDIN can be used as a way to quantify the flow velocity of mLVs with a scan time of ~ 10 min (or shorter) in a limited coverage. Accordingly, the suggested approach can be applied to noninvasively studying meningeal lymphatic flows in general and also understanding the clearance pathways of waste production through mLVs in humans, which warrants further investigation.
Collapse
Affiliation(s)
- Jun-Hee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| |
Collapse
|
32
|
Weickenmeier J. Exploring the multiphysics of the brain during development, aging, and in neurological diseases. BRAIN MULTIPHYSICS 2023; 4:100068. [PMID: 37476409 PMCID: PMC10358452 DOI: 10.1016/j.brain.2023.100068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
The human brain remains an endless source of wonder and represents an intruiging scientific frontier. Multiphysics approaches naturally lend themselves to combine our extensive knowledge about the neurobiology of aging and diseases with mechanics to better capture the multiscale behavior of the brain. Our group uses experimental methods, medical image analysis, and constitutive modeling to develop better disease models with the long-term goal to improve diagnosis, treatment, and ultimately enable prevention of many prevalent age- and disease-related brain changes. In the present perspective, we outline on-going work related to neurodevelopment, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| |
Collapse
|
33
|
Novikova S, Soloveva N, Farafonova T, Tikhonova O, Shimansky V, Kugushev I, Zgoda V. Proteomic Shotgun and Targeted Mass Spectrometric Datasets of Cerebrospinal Fluid (Liquor) Derived from Patients with Vestibular Schwannoma. DATA 2023. [DOI: 10.3390/data8040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Vestibular schwannomas are relatively rare intracranial tumors compared to other brain tumors. Data on the molecular features, especially on schwannoma proteome, are scarce. The 41 cerebrospinal fluid (liquor) samples were obtained during the surgical removal of vestibular schwannoma. Obtained peptide samples were analyzed by shotgun LC-MS/MS high-resolution mass spectrometry. The same peptide samples were spiked with 148 stable isotopically labeled peptide standards (SIS) followed by alkaline fractionation and scheduled multiple reaction monitoring (MRM) for quantitative analysis. The natural counterparts of SIS peptides were mapped onto 111 proteins that were Food and Drug Administration (FDA)-approved for diagnostic use. As a result, 525 proteins were identified by shotgun LC-MS/MS with high confidence (at least two peptides per protein, FDR < 1%) in liquor samples. Absolute quantitative concentrations were obtained for 54 FDA-approved proteins detected in at least five experimental samples. Since there is lack of data on the molecular landscape of vestibular schwannoma, the obtained datasets are unique and one of the first in its field.
Collapse
Affiliation(s)
| | | | | | - Olga Tikhonova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Vadim Shimansky
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, 125047 Moscow, Russia
| | - Ivan Kugushev
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, 125047 Moscow, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
34
|
Paldor I, Madrer N, Vaknine Treidel S, Shulman D, Greenberg DS, Soreq H. Cerebrospinal fluid and blood profiles of transfer RNA fragments show age, sex, and Parkinson's disease-related changes. J Neurochem 2023; 164:671-683. [PMID: 36354307 DOI: 10.1111/jnc.15723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Indexed: 11/12/2022]
Abstract
Transfer RNA fragments (tRFs) have recently been shown to be an important family of small regulatory RNAs with diverse functions. Recent reports have revealed modified tRF blood levels in a number of nervous system conditions including epilepsy, ischemic stroke, and neurodegenerative diseases, but little is known about tRF levels in the cerebrospinal fluid (CSF). To address this issue, we studied age, sex, and Parkinson's disease (PD) effects on the distributions of tRFs in the CSF and blood data of healthy controls and PD patients from the NIH and the Parkinson's Progression Markers Initiative (PPMI) small RNA-seq datasets. We discovered that long tRFs are expressed in higher levels in the CSF than in the blood. Furthermore, the CSF showed a pronounced age-associated decline in the level of tRFs cleaved from the 3'-end and anti-codon loop of the parental tRNA (3'-tRFs, i-tRFs), and more pronounced profile differences than the blood profiles between the sexes. In comparison, we observed moderate age-related elevation of blood 3'-tRF levels. In addition, distinct sets of tRFs in the CSF and in the blood segregated PD patients from controls. Finally, we found enrichment of tRFs predicted to target cholinergic mRNAs (Cholino-tRFs) among mitochondrial-originated tRFs, raising the possibility that the neurodegeneration-related mitochondrial impairment in PD patients may lead to deregulation of their cholinergic tone. Our findings demonstrate that the CSF and blood tRF profiles are distinct and that the CSF tRF profiles are modified in a sex-, age-, and disease-related manner, suggesting that they reflect the inter-individual cerebral differences and calling for incorporating this important subset of small RNA regulators into future studies.
Collapse
Affiliation(s)
- Iddo Paldor
- The Neurosurgery Department, Rambam Health Care Campus, Haifa, Israel
| | - Nimrod Madrer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Vaknine Treidel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Shulman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David S Greenberg
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
35
|
Tigchelaar C, Muller WD, Atmosoerodjo SD, Wardenaar KJ, Kema IP, Absalom AR, van Faassen M. Concentration gradients of monoamines, their precursors and metabolites in serial lumbar cerebrospinal fluid of neurologically healthy patients determined with a novel LC-MS/MS technique. Fluids Barriers CNS 2023; 20:13. [PMID: 36782208 PMCID: PMC9923930 DOI: 10.1186/s12987-023-00413-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Potential biomarkers for neuropsychiatric disorders are cerebrospinal fluid (CSF) monoamines and their corresponding precursors and metabolites. During CSF sampling, CSF flows towards the lumbar sampling site from more cranial regions. To compare the results of studies in which different CSF volumes were acquired, it is important to know if ventricular-lumbar concentration gradients exist. This has only been addressed for a few biogenic amines, and almost exclusively in neurologically unwell patients due to the burden of a lumbar puncture (necessary to obtain CSF). The aim of our study was to determine if concentration gradients exist for routinely measured CSF constituents and biogenic amines in neurologically healthy patients. We applied a novel ultrasensitive liquid chromatography mass spectrometry (LC-MS/MS) method for the simultaneous quantification of multiple monoamines, precursors and metabolites in CSF and plasma. METHODS CSF and blood samples were collected from twenty neurologically healthy patients undergoing spinal anaesthesia. Ten mL of lumbar CSF was collected in five consecutive two mL fractions. We determined leucocyte and erythrocyte counts, glucose, albumin and protein concentrations and quantified monoamines, precursors and metabolites on each of the fractions using LC-MS/MS. RESULTS In twenty patients (60% male; median age: 46 years), dopamine, DOPAC, 3-MT, HVA, noradrenaline, normetanephrine and 5-HIAA concentrations increased from the first to the last CSF fraction (all p < 0.001). CSF adrenaline concentrations were below the detection limit, whereas serotonin measurements were regarded as unreliable. Albumin and total protein levels decreased significantly across CSF fractions. CONCLUSIONS A ventricular-lumbar CSF concentration gradient existed for most of the investigated analytes. This is a novel finding for dopamine, noradrenaline, 3-MT and normetanephrine. These results contribute to the understanding of the neurobiology and underline the importance of standardized procedures for CSF handling to allow comparisons between studies.
Collapse
Affiliation(s)
- Celien Tigchelaar
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Willemien D. Muller
- grid.4830.f0000 0004 0407 1981Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Sawal D. Atmosoerodjo
- grid.4830.f0000 0004 0407 1981Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Klaas J. Wardenaar
- grid.4830.f0000 0004 0407 1981Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P. Kema
- grid.4830.f0000 0004 0407 1981Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthony R. Absalom
- grid.4830.f0000 0004 0407 1981Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Martijn van Faassen
- grid.4830.f0000 0004 0407 1981Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Qiao H, Chiu Y, Liang X, Xia S, Ayrapetyan M, Liu S, He C, Song R, Zeng J, Deng X, Yuan W, Zhao Z. Microglia innate immune response contributes to the antiviral defense and blood-CSF barrier function in human choroid plexus organoids during HSV-1 infection. J Med Virol 2023; 95:e28472. [PMID: 36606611 PMCID: PMC10107173 DOI: 10.1002/jmv.28472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
The choroid plexus (ChP) is the source of cerebrospinal fluid (CSF). The ChP-CSF system not only provides the necessary cushion for the brain but also works as a sink for waste clearance. During sepsis, pathogens and host immune cells can weaken the ChP barrier and enter the brain, causing cerebral dysfunctions known as sepsis-associated encephalophagy. Here, we used human ChP organoid (ChPO) to model herpes simplex virus type 1 (HSV-1) infection and found ChP epithelial cells were highly susceptible to HSV-1. Since the current ChPO model lacks a functional innate immune component, particularly microglia, we next developed a new microglia-containing ChPO model, and found microglia could effectively limit HSV-1 infection and protect epithelial barrier in ChPOs. Furthermore, we found the innate immune cyclic GMP-AMP synthase (cGAS)-STING pathway and its downstream interferon response were essential, as cGAS inhibitor RU.512 or STING inhibitor H-151 abolished microglia antiviral function and worsened ChP barrier in organoids. These results together indicated that cGAS-STING pathway coordinates antiviral response in ChP and contributes to treating sepsis or related neurological conditions.
Collapse
Affiliation(s)
- Haowen Qiao
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yuanpu Chiu
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xinyan Liang
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Shangzhou Xia
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mariam Ayrapetyan
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Siqi Liu
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Cuiling He
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ruocen Song
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jianxiong Zeng
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhen Zhao
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
37
|
Central Stimulatory Effect of Kynurenic Acid on BDNF-TrkB Signaling and BER Enzymatic Activity in the Hippocampal CA1 Field in Sheep. Int J Mol Sci 2022; 24:ijms24010136. [PMID: 36613581 PMCID: PMC9820639 DOI: 10.3390/ijms24010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Deficiency of neurotrophic factors and oxidative DNA damage are common causes of many neurodegenerative diseases. Recently, the importance of kynurenic acid (KYNA), an active metabolite of tryptophan, has increased as a neuroprotective molecule in the brain. Therefore, the present study tested the hypothesis that centrally acting KYNA would positively affect: (1) brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling and (2) selected base excision repair (BER) pathway enzymes activities in the hippocampal CA1 field in sheep. Both lower (20 μg in total) and higher (100 μg in total) doses of KYNA infused into the third brain ventricle differentially increased the abundance of BDNF and TrkB mRNA in the CA1 field; additionally, the higher dose increased BDNF tissue concentration. The lower dose of KYNA increased mRNA expression for 8-oxoguanine glycosylase (OGG1), N-methylpurine DNA glycosylase (MPG), and thymine DNA glycosylase and stimulated the repair of 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxy-cytosine as determined by the excision efficiency of lesioned nucleobases. The higher dose increased the abundance of OGG1 and MPG transcripts, however, its stimulatory effect on repair activity was less pronounced in all cases compared to the lower dose. The increased level of AP-endonuclease mRNA expression was dose-dependent. In conclusion, the potential neurotrophic and neuroprotective effects of KYNA in brain cells may involve stimulation of the BDNF-TrkB and BER pathways.
Collapse
|
38
|
Wood CM, Farag VE, Sy JC. Modeling of the effect of cerebrospinal fluid flow modulation on locally delivered drugs in the brain. J Pharmacokinet Pharmacodyn 2022; 49:657-671. [PMID: 36282445 DOI: 10.1007/s10928-022-09827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 10/31/2022]
Abstract
Cerebrospinal fluid (CSF) plays a vital role in maintaining brain homeostasis and recent research has focused on elucidating the role that convective flow of CSF plays in brain health. This paper describes a computational compartmental model of how CSF dynamics affect drug pharmacokinetics in the rat brain. Our model implements a local, sustained release approach for drug delivery to the brain. Simulation outputs highlight the potential for modulating CSF flow to improve overall drug pharmacokinetics in the central nervous system and suggest that concomitant CSF modulation and optimized drug release rates from implantable depots can be used to engineer the duration of action of chemotherapeutics. As an example, the tissue exposure of temozolomide, the standard of care treatment for glioblastoma, was modeled in conjunction with two CSF-modulating drugs: acetazolamide and verapamil. Simulations indicate that temozolomide exposure in the interstitial fluid is increased by 25% when using local sustained release delivery systems and concomitant acetazolamide delivery to reduce CSF production. This computational model can be used to produce insight on how to appropriately modulate CSF production and engineer drug release to tailor drug exposure in the brain while limiting off-target effects. As new research continues to elucidate the dynamic roles of CSF, this model can be further improved and leveraged to provide information on how CSF modulation may play a beneficial role in treating a wide variety of neurological disease.
Collapse
Affiliation(s)
- Caroline M Wood
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Veronica E Farag
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Jay C Sy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA.
| |
Collapse
|
39
|
Li K, Schön M, Naviaux JC, Monk JM, Alchus-Laiferová N, Wang L, Straka I, Matejička P, Valkovič P, Ukropec J, Tarnopolsky MA, Naviaux RK, Ukropcová B. Cerebrospinal fluid and plasma metabolomics of acute endurance exercise. FASEB J 2022; 36:e22408. [PMID: 35713567 DOI: 10.1096/fj.202200509r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
Metabolomics has emerged as a powerful new tool in precision medicine. No studies have yet been published on the metabolomic changes in cerebrospinal fluid (CSF) produced by acute endurance exercise. CSF and plasma were collected from 19 young active adults (13 males and 6 females) before and 60 min after a 90-min monitored outdoor run. The median age, BMI, and VO2 max of subjects was 25 years (IQR 22-31), 23.2 kg/m2 (IQR 21.7-24.5), and 47 ml/kg/min (IQR 38-51), respectively. Targeted, broad-spectrum metabolomics was performed by liquid chromatography, tandem mass spectrometry (LC-MS/MS). In the CSF, purines and pyrimidines accounted for 32% of the metabolic impact after acute endurance exercise. Branch chain amino acids, amino acid neurotransmitters, fatty acid oxidation, phospholipids, and Krebs cycle metabolites traceable to mitochondrial function accounted for another 52% of the changes. A narrow but important channel of metabolic communication was identified between the brain and body by correlation network analysis. By comparing these results to previous work in experimental animal models, we found that over 80% of the changes in the CSF correlated with a cascade of mitochondrial and metabolic changes produced by ATP signaling. ATP is released as a co-neurotransmitter and neuromodulator at every synapse studied to date. By regulating brain mitochondrial function, ATP release was identified as an early step in the kinetic cascade of layered benefits produced by endurance exercise.
Collapse
Affiliation(s)
- Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, California, USA.,Department of Medicine, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Martin Schön
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jane C Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, California, USA.,Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Nikoleta Alchus-Laiferová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, California, USA.,Department of Medicine, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Igor Straka
- 2nd Department of Neurology, Faculty of Medicine, Comenius University and University Hospital Bratislava, Bratislava, Slovakia
| | - Peter Matejička
- 2nd Department of Neurology, Faculty of Medicine, Comenius University and University Hospital Bratislava, Bratislava, Slovakia
| | - Peter Valkovič
- 2nd Department of Neurology, Faculty of Medicine, Comenius University and University Hospital Bratislava, Bratislava, Slovakia.,Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, California, USA.,Department of Medicine, University of California, San Diego School of Medicine, San Diego, California, USA.,Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, California, USA.,Department of Pathology, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|