1
|
Seo S, Bharmauria V, Schütz A, Yan X, Wang H, Crawford JD. Multiunit Frontal Eye Field Activity Codes the Visuomotor Transformation, But Not Gaze Prediction or Retrospective Target Memory, in a Delayed Saccade Task. eNeuro 2024; 11:ENEURO.0413-23.2024. [PMID: 39054056 PMCID: PMC11373882 DOI: 10.1523/eneuro.0413-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Single-unit (SU) activity-action potentials isolated from one neuron-has traditionally been employed to relate neuronal activity to behavior. However, recent investigations have shown that multiunit (MU) activity-ensemble neural activity recorded within the vicinity of one microelectrode-may also contain accurate estimations of task-related neural population dynamics. Here, using an established model-fitting approach, we compared the spatial codes of SU response fields with corresponding MU response fields recorded from the frontal eye fields (FEFs) in head-unrestrained monkeys (Macaca mulatta) during a memory-guided saccade task. Overall, both SU and MU populations showed a simple visuomotor transformation: the visual response coded target-in-eye coordinates, transitioning progressively during the delay toward a future gaze-in-eye code in the saccade motor response. However, the SU population showed additional secondary codes, including a predictive gaze code in the visual response and retention of a target code in the motor response. Further, when SUs were separated into regular/fast spiking neurons, these cell types showed different spatial code progressions during the late delay period, only converging toward gaze coding during the final saccade motor response. Finally, reconstructing MU populations (by summing SU data within the same sites) failed to replicate either the SU or MU pattern. These results confirm the theoretical and practical potential of MU activity recordings as a biomarker for fundamental sensorimotor transformations (e.g., target-to-gaze coding in the oculomotor system), while also highlighting the importance of SU activity for coding more subtle (e.g., predictive/memory) aspects of sensorimotor behavior.
Collapse
Affiliation(s)
- Serah Seo
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vishal Bharmauria
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida 33606
| | - Adrian Schütz
- Department of Neurophysics, Philipps-Universität Marburg, 35032 Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, 35032 Marburg, and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Xiaogang Yan
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Hongying Wang
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
2
|
Blondiaux F, Lebrun L, Hanseeuw BJ, Crevecoeur F. Impairments of saccadic and reaching adaptation in essential tremor are linked to movement execution. J Neurophysiol 2023; 130:1092-1102. [PMID: 37791388 DOI: 10.1152/jn.00165.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Essential tremor (ET) is a neurological disorder characterized by involuntary oscillations of the limbs. Previous studies have hypothesized that ET is a cerebellar disorder and reported impairments in motor adaptation. However, recent advances have highlighted that motor adaptation involves several components linked to anticipation and control, all dependent on cerebellum. We studied the contribution of both components in adaptation to better understand the adaptation impairments observed in ET from a behavioral perspective. To address this question, we investigated behavioral markers of adaptation in ET patients (n = 20) and age-matched neurologically intact volunteers (n = 20) in saccadic and upper limb adaptation tasks, probing compensation for target jumps and for velocity-dependent force fields, respectively. We found that both groups adapted their movements to the novel contexts; however, ET patients adapted to a lesser extent compared with neurologically intact volunteers. Importantly, components of the movement linked to anticipation were preserved in the ET group, whereas components linked to movement execution appeared responsible for the adaptation deficit in this group. Altogether, our results suggest that execution deficits may be a specific functional consequence of the alteration of neural pathways associated with ET.NEW & NOTEWORTHY We tested essential tremor patients' adaptation abilities in classical tasks including saccadic adaptation to target jumps and reaching adaptation to force field disturbances. Patients' adaptation was present but impaired in both tasks. Interestingly, the deficits were mainly present during movement execution, whereas the anticipatory components of movements were similar to neurologically intact volunteers. These findings reinforce the hypothesis of a cerebellar origin for essential tremor and detail the motor adaptation impairments previously found in this disorder.
Collapse
Affiliation(s)
- Florence Blondiaux
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Louisien Lebrun
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
| | - Bernard J Hanseeuw
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
- Gordon Center for Medical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Louvain Aging Brain Lab, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Brussels, Belgium
| | - Frédéric Crevecoeur
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| |
Collapse
|
3
|
Horslen BC, Milburn GN, Blum KP, Simha SN, Campbell KS, Ting LH. History-dependent muscle resistance to stretch remains high after small, posturally relevant pre-movements. J Exp Biol 2023; 226:jeb245456. [PMID: 37661732 PMCID: PMC10560558 DOI: 10.1242/jeb.245456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
The contributions of intrinsic muscle fiber resistance during mechanical perturbations to standing and other postural behaviors are unclear. Muscle short-range stiffness is known to vary depending on the current level and history of the muscle's activation, as well as the muscle's recent movement history; this property has been referred to as history dependence or muscle thixotropy. However, we currently lack sufficient data about the degree to which muscle stiffness is modulated across posturally relevant characteristics of muscle stretch and activation. We characterized the history dependence of muscle's resistance to stretch in single, permeabilized, activated, muscle fibers in posturally relevant stretch conditions and activation levels. We used a classic paired muscle stretch paradigm, varying the amplitude of a 'conditioning' triangular stretch-shorten cycle followed by a 'test' ramp-and-hold imposed after a variable inter-stretch interval. We tested low (<15%), intermediate (15-50%) and high (>50%) muscle fiber activation levels, evaluating short-range stiffness and total impulse in the test stretch. Muscle fiber resistance to stretch remained high at conditioning amplitudes of <1% optimal fiber length, L0, and inter-stretch intervals of >1 s, characteristic of healthy standing postural sway. An ∼70% attenuation of muscle resistance to stretch was reached at conditioning amplitudes of >3% L0 and inter-stretch intervals of <0.1 s, characteristic of larger, faster postural sway in balance-impaired individuals. The thixotropic changes cannot be predicted solely on muscle force at the time of stretch. Consistent with the disruption of muscle cross-bridges, muscle resistance to stretch during behavior can be substantially attenuated if the prior motion is large enough and/or frequent enough.
Collapse
Affiliation(s)
- Brian C. Horslen
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and The Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gregory N. Milburn
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Kyle P. Blum
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and The Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Surabhi N. Simha
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and The Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Lena H. Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and The Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
De Comite A, Lefèvre P, Crevecoeur F. Continuous evaluation of cost-to-go for flexible reaching control and online decisions. PLoS Comput Biol 2023; 19:e1011493. [PMID: 37756355 PMCID: PMC10561875 DOI: 10.1371/journal.pcbi.1011493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/09/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Humans consider the parameters linked to movement goal during reaching to adjust their control strategy online. Indeed, rapid changes in target structure or disturbances interfering with their initial plan elicit rapid changes in behavior. Here, we hypothesize that these changes could result from the continuous use of a decision variable combining motor and cognitive components. We combine an optimal feedback controller with a real-time evaluation of the expected cost-to-go, which considers target- and movement-related costs, in a common theoretical framework. This model reproduces human behaviors in presence of changes in the target structure occurring during movement and of online decisions to flexibly change target following external perturbations. It also predicts that the time taken to decide to select a novel goal after a perturbation depends on the amplitude of the disturbance and on the rewards of the different options, which is a direct result of the continuous monitoring of the cost-to-go. We show that this result was present in our previously collected dataset. Together our developments point towards a continuous evaluation of the cost-to-go during reaching to update control online and make efficient decisions about movement goal.
Collapse
Affiliation(s)
- Antoine De Comite
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Philippe Lefèvre
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Frédéric Crevecoeur
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|