1
|
Graczyk E, Hutchison B, Valle G, Bjanes D, Gates D, Raspopovic S, Gaunt R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J Neurosci 2024; 44:e1237242024. [PMID: 39358021 PMCID: PMC11450537 DOI: 10.1523/jneurosci.1237-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Somatosensory neuroprostheses restore, replace, or enhance tactile and proprioceptive feedback for people with sensory impairments due to neurological disorders or injury. Somatosensory neuroprostheses typically couple sensor inputs from a wearable device, prosthesis, robotic device, or virtual reality system with electrical stimulation applied to the somatosensory nervous system via noninvasive or implanted interfaces. While prior research has mainly focused on technology development and proof-of-concept studies, recent acceleration of clinical studies in this area demonstrates the translational potential of somatosensory neuroprosthetic systems. In this review, we provide an overview of neurostimulation approaches currently undergoing human testing and summarize recent clinical findings on the perceptual, functional, and psychological impact of somatosensory neuroprostheses. We also cover current work toward the development of advanced stimulation paradigms to produce more natural and informative sensory feedback. Finally, we provide our perspective on the remaining challenges that need to be addressed prior to translation of somatosensory neuroprostheses.
Collapse
Affiliation(s)
- Emily Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Brianna Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg 41296, Sweden
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - David Bjanes
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125
| | - Deanna Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zurich, Zurich 8092, Switzerland
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
2
|
Pedrocchiguest A, Guanziroli E. Guest Editorial Special Section on Functional Recovery and Brain Plasticity. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 4:275-277. [PMID: 38196974 PMCID: PMC10776091 DOI: 10.1109/ojemb.2023.3339954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The aim of rehabilitation after neurological damage is functional recovery, which includes motor, sensory, and cognitive aspects, which are closely interrelated [22].
Collapse
Affiliation(s)
- Alessandra Pedrocchiguest
- NEARLAB, Neuroengineering and Medical Robotics Laboratory, AND WE-COBOT, Wearable Collaborative Laboratory, Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
| | | |
Collapse
|
3
|
Fisher LE, Gaunt RA, Huang H. Sensory Restoration for Improved Motor Control of Prostheses. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100498. [PMID: 37860289 PMCID: PMC10583965 DOI: 10.1016/j.cobme.2023.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Somatosensory neuroprostheses are devices with the potential to restore the senses of touch and movement from prosthetic limbs for people with limb amputation or paralysis. By electrically stimulating the peripheral or central nervous system, these devices evoke sensations that appear to emanate from the missing or insensate limb, and when paired with sensors on the prosthesis, they can improve the functionality and embodiment of the prosthesis. There have been major advances in the design of these systems over the past decade, although several important steps remain before they can achieve widespread clinical adoption outside the lab setting. Here, we provide a brief overview of somatosensory neuroprostheses and explores these hurdles and potential next steps towards clinical translation.
Collapse
Affiliation(s)
- Lee E. Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert A. Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - He Huang
- UNC/NC State Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Kim D, Triolo R, Charkhkar H. Plantar somatosensory restoration enhances gait, speed perception, and motor adaptation. Sci Robot 2023; 8:eadf8997. [PMID: 37820003 DOI: 10.1126/scirobotics.adf8997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Lower limb loss is a major insult to the body's nervous and musculoskeletal systems. Despite technological advances in prosthesis design, artificial limbs are not yet integrated into the body's physiological systems. Therefore, lower limb amputees (LLAs) experience lower balance confidence, higher fear of falls, and impaired gait compared with their able-bodied peers (ABs). Previous studies have demonstrated that restored sensations perceived as originating directly from the missing limb via neural interfaces improve balance and performance in certain ambulatory tasks; however, the effects of such evoked sensations on neural circuitries involved in the locomotor activity are not well understood. In this work, we investigated the effects of plantar sensation elicited by peripheral nerve stimulation delivered by multicontact nerve cuff electrodes on gait symmetry and stability, speed perception, and motor adaptation. We found that restored plantar sensation increased stance time and propulsive force on the prosthetic side, improved gait symmetry, and yielded an enhanced perception of prosthetic limb movement. Our results show that the locomotor adaptation among LLAs with plantar sensation became similar to that of ABs. These findings suggest that our peripheral nerve-based approach to elicit plantar sensation directly affects central nervous pathways involved in locomotion and motor adaptation during walking. Our neuroprosthesis provided a unique model to investigate the role of somatosensation in the lower limb during walking and its effects on perceptual recalibration after a locomotor adaptation task. Furthermore, we demonstrated how plantar sensation in LLAs could effectively increase mobility, improve walking dynamics, and possibly reduce fall risks.
Collapse
Affiliation(s)
- Daekyoo Kim
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
- Department of Physical Education, Korea University, Seoul 02841, Korea
| | - Ronald Triolo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Hamid Charkhkar
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Li S, Triolo RJ, Charkhkar H. Neural sensory stimulation does not interfere with the H-reflex in individuals with lower limb amputation. Front Neurosci 2023; 17:1276308. [PMID: 37817801 PMCID: PMC10560717 DOI: 10.3389/fnins.2023.1276308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Individuals with lower limb loss experience an increased risk of falls partly due to the lack of sensory feedback from their missing foot. It is possible to restore plantar sensation perceived as originating from the missing foot by directly interfacing with the peripheral nerves remaining in the residual limb, which in turn has shown promise in improving gait and balance. However, it is yet unclear how these electrically elicited plantar sensation are integrated into the body's natural sensorimotor control reflexes. Historically, the H-reflex has been used as a model for investigating sensorimotor control. Within the spinal cord, an array of inputs, including plantar cutaneous sensation, are integrated to produce inhibitory and excitatory effects on the H-reflex. Methods In this study, we characterized the interplay between electrically elicited plantar sensations and this intrinsic reflex mechanism. Participants adopted postures mimicking specific phases of the gait cycle. During each posture, we electrically elicited plantar sensation, and subsequently the H-reflex was evoked both in the presence and absence of these sensations. Results Our findings indicated that electrically elicited plantar sensations did not significantly alter the H-reflex excitability across any of the adopted postures. Conclusion This suggests that individuals with lower limb loss can directly benefit from electrically elicited plantar sensation during walking without disrupting the existing sensory signaling pathways that modulate reflex responses.
Collapse
Affiliation(s)
- Suzhou Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH, United States
| | - Ronald J. Triolo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH, United States
| | - Hamid Charkhkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|