1
|
Bonnaire J, Dumas G, Cassell J. Bringing together multimodal and multilevel approaches to study the emergence of social bonds between children and improve social AI. FRONTIERS IN NEUROERGONOMICS 2024; 5:1290256. [PMID: 38827377 PMCID: PMC11140154 DOI: 10.3389/fnrgo.2024.1290256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
This protocol paper outlines an innovative multimodal and multilevel approach to studying the emergence and evolution of how children build social bonds with their peers, and its potential application to improving social artificial intelligence (AI). We detail a unique hyperscanning experimental framework utilizing functional near-infrared spectroscopy (fNIRS) to observe inter-brain synchrony in child dyads during collaborative tasks and social interactions. Our proposed longitudinal study spans middle childhood, aiming to capture the dynamic development of social connections and cognitive engagement in naturalistic settings. To do so we bring together four kinds of data: the multimodal conversational behaviors that dyads of children engage in, evidence of their state of interpersonal rapport, collaborative performance on educational tasks, and inter-brain synchrony. Preliminary pilot data provide foundational support for our approach, indicating promising directions for identifying neural patterns associated with productive social interactions. The planned research will explore the neural correlates of social bond formation, informing the creation of a virtual peer learning partner in the field of Social Neuroergonomics. This protocol promises significant contributions to understanding the neural basis of social connectivity in children, while also offering a blueprint for designing empathetic and effective social AI tools, particularly for educational contexts.
Collapse
Affiliation(s)
| | - Guillaume Dumas
- Research Center of the CHU Sainte-Justine, Department of Psychiatry, University of Montréal, Montreal, QC, Canada
- Mila–Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Justine Cassell
- Inria Paris Centre, Paris, France
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Li G, Ma K, Rossbach K, Niu Y, Li Q, Liu Z, Zhang K. Cortical activation for adolescent-onset minor depression and major depressive disorder: an fNIRS study. Ann Gen Psychiatry 2024; 23:17. [PMID: 38724998 PMCID: PMC11084134 DOI: 10.1186/s12991-024-00500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND While depression is increasing worldwide, some patients are diagnosed as having Major Depressive Disorder (MDD), but others are diagnosed with minor depression, however, the potential neuro mechanism is unknown. METHODS Sixty-two patients with minor depression, 44 adolescents with MDD and 54 healthy adolescents participated in this study. Functional near-infrared spectroscopy (fNIRS), both HAMD and HAMA data were collected from all of the participants. RESULTS The result indicates the pervasively decreased activation of BA, 11, 21, 45 and 46 were observed in the MDD group and reduced activation of BA 45 was observed in the minor depression group. However, cortical activation was not observed between the minor depression or MDD groups. Cortical activation was also not correlated with the depressive/anxious score in the minor and MDD groups separately. CONCLUSIONS Cortical activation was pervasively decreased in the MDD group and slightly reduced in the minor depression group, which may be a potential neural mechanism. As reduced cortical activation in minor depression, interventions in the early stages of minor depression may help slow or even modify the development of the illness.
Collapse
Affiliation(s)
- Gaizhi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, No 85 Jiefang Nan Road, Taiyuan, Shanxi Province, 030001, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ke Ma
- Department of Orthodontics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | | | - Ying Niu
- College of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qiqi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, No 85 Jiefang Nan Road, Taiyuan, Shanxi Province, 030001, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, No 85 Jiefang Nan Road, Taiyuan, Shanxi Province, 030001, China.
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, No 85 Jiefang Nan Road, Taiyuan, Shanxi Province, 030001, China.
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
3
|
Guo R, Wu J, Zheng Y, Lin X, Zhuang Z, Yin J, Lin Z, Xie L, Ma S. Graph Theory Further Revealed Visual Spatial Working Memory Impairment in Patients with Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2811-2823. [PMID: 38737113 PMCID: PMC11088826 DOI: 10.2147/jir.s462268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Background Inflammatory Bowel Disease (IBD) patients may experience cognitive impairments in Visuospatial Working Memory (VSWM), significantly impacting their quality of life. However, the mechanisms underlying these impairments remain poorly understood. Methods We studied functional MRI and graph theory analysis to investigate changes in functional connectivity networks during the Mental Rotation Task (MRT) in IBD patients. Twenty IBD patients (13 males, 7 females; mean age = 34.95 ± 13.80 years; mean disease duration = 2.43 ± 2.37 years) participated in the study. Exclusion criteria encompassed recent use of analgesics, 5-Aminosalicylate, corticosteroids, or immunosuppressants within the past three months. Additionally, we recruited 20 age-, gender-, and education-matched healthy controls for comparison. Results Compared to a control group, IBD patients exhibited significantly longer reaction times and reduced accuracy during the MRT. Our analysis revealed abnormalities in multiple nodal attributes within the functional connectivity network, particularly in regions such as the bilateral orbitofrontal cortex, right supplementary motor area, bilateral parahippocampal gyrus, and bilateral anterior temporal lobe. We observed that the nodal efficiency in the left temporal pole is negatively correlated with Red Blood Cell Distribution Width (RDW) and positively correlated with response time of MRT. Conclusion Our findings revealed notable abnormalities in multiple node attributes among IBD patients during MRT, providing evidence of cognitive impairments in VSWM in IBD patients. This study found RDW maybe can serve as a clinical indicator for predicting early VSWM impairment in patients with IBD.
Collapse
Affiliation(s)
- Ruiwei Guo
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Jin Wu
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yanmin Zheng
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Xiaona Lin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Zelin Zhuang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Jingjing Yin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Zhirong Lin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| |
Collapse
|
4
|
Wertz J, Rüttiger L, Bender B, Klose U, Stark RS, Dapper K, Saemisch J, Braun C, Singer W, Dalhoff E, Bader K, Wolpert SM, Knipper M, Munk MHJ. Differential cortical activation patterns: pioneering sub-classification of tinnitus with and without hyperacusis by combining audiometry, gamma oscillations, and hemodynamics. Front Neurosci 2024; 17:1232446. [PMID: 38239827 PMCID: PMC10794389 DOI: 10.3389/fnins.2023.1232446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024] Open
Abstract
The ongoing controversies about the neural basis of tinnitus, whether linked with central neural gain or not, may hamper efforts to develop therapies. We asked to what extent measurable audiometric characteristics of tinnitus without (T) or with co-occurrence of hyperacusis (TH) are distinguishable on the level of cortical responses. To accomplish this, electroencephalography (EEG) and concurrent functional near-infrared spectroscopy (fNIRS) were measured while patients performed an attentionally demanding auditory discrimination task using stimuli within the individual tinnitus frequency (fTin) and a reference frequency (fRef). Resting-state-fMRI-based functional connectivity (rs-fMRI-bfc) in ascending auditory nuclei (AAN), the primary auditory cortex (AC-I), and four other regions relevant for directing attention or regulating distress in temporal, parietal, and prefrontal cortex was compiled and compared to EEG and concurrent fNIRS activity in the same brain areas. We observed no group differences in pure-tone audiometry (PTA) between 10 and 16 kHz. However, the PTA threshold around the tinnitus pitch was positively correlated with the self-rated tinnitus loudness and also correlated with distress in T-groups, while TH experienced their tinnitus loudness at minimal loudness levels already with maximal suffering scores. The T-group exhibited prolonged auditory brain stem (ABR) wave I latency and reduced ABR wave V amplitudes (indicating reduced neural synchrony in the brainstem), which were associated with lower rs-fMRI-bfc between AAN and the AC-I, as observed in previous studies. In T-subjects, these features were linked with elevated spontaneous and reduced evoked gamma oscillations and with reduced deoxygenated hemoglobin (deoxy-Hb) concentrations in response to stimulation with lower frequencies in temporal cortex (Brodmann area (BA) 41, 42, 22), implying less synchronous auditory responses during active auditory discrimination of reference frequencies. In contrast, in the TH-group gamma oscillations and hemodynamic responses in temporoparietal regions were reversed during active discrimination of tinnitus frequencies. Our findings suggest that T and TH differ in auditory discrimination and memory-dependent directed attention during active discrimination at either tinnitus or reference frequencies, offering a test paradigm that may allow for more precise sub-classification of tinnitus and future improved treatment approaches.
Collapse
Affiliation(s)
- Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Robert S. Stark
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Jörg Saemisch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Ernst Dalhoff
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katharina Bader
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Stephan M. Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|