1
|
Pulferer HS, Kostoglou K, Müller-Putz GR. Improving non-invasive trajectory decoding via neural correlates of continuous erroneous feedback processing. J Neural Eng 2024; 21:056010. [PMID: 39231465 DOI: 10.1088/1741-2552/ad7762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Objective. Over the last decades, error-related potentials (ErrPs) have repeatedly proven especially useful as corrective mechanisms in invasive and non-invasive brain-computer interfaces (BCIs). However, research in this context exclusively investigated the distinction of discrete events intocorrectorerroneousto the present day. Due to this predominant formulation as a binary classification problem, classical ErrP-based BCIs fail to monitor tasks demanding quantitative information on error severity rather than mere qualitative decisions on error occurrence. As a result, fine-tuned and natural feedback control based on continuously perceived deviations from an intended target remains beyond the capabilities of previously used BCI setups.Approach.To address this issue for future BCI designs, we investigated the feasibility of regressing rather than classifying error-related activity non-invasively from the brain.Main results.Using pre-recorded data from ten able-bodied participants in three sessions each and a multi-output convolutional neural network, we demonstrated the above-chance regression of ongoing target-feedback discrepancies from brain signals in a pseudo-online fashion. In a second step, we used this inferred information about the target deviation to correct the initially displayed feedback accordingly, reporting significant improvements in correlations between corrected feedback and target trajectories across feedback conditions.Significance.Our results indicate that continuous information on target-feedback discrepancies can be successfully regressed from cortical activity, paving the way to increasingly naturalistic, fine-tuned correction mechanisms for future BCI applications.
Collapse
Affiliation(s)
- Hannah S Pulferer
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
| | - Kyriaki Kostoglou
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
- BioTechMed-Graz, Graz, Styria, Austria
| |
Collapse
|
2
|
Mondini V, Sburlea AI, Müller-Putz GR. Towards unlocking motor control in spinal cord injured by applying an online EEG-based framework to decode motor intention, trajectory and error processing. Sci Rep 2024; 14:4714. [PMID: 38413782 PMCID: PMC10899181 DOI: 10.1038/s41598-024-55413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
Brain-computer interfaces (BCIs) can translate brain signals directly into commands for external devices. Electroencephalography (EEG)-based BCIs mostly rely on the classification of discrete mental states, leading to unintuitive control. The ERC-funded project "Feel Your Reach" aimed to establish a novel framework based on continuous decoding of hand/arm movement intention, for a more natural and intuitive control. Over the years, we investigated various aspects of natural control, however, the individual components had not yet been integrated. Here, we present a first implementation of the framework in a comprehensive online study, combining (i) goal-directed movement intention, (ii) trajectory decoding, and (iii) error processing in a unique closed-loop control paradigm. Testing involved twelve able-bodied volunteers, performing attempted movements, and one spinal cord injured (SCI) participant. Similar movement-related cortical potentials and error potentials to previous studies were revealed, and the attempted movement trajectories were overall reconstructed. Source analysis confirmed the involvement of sensorimotor and posterior parietal areas for goal-directed movement intention and trajectory decoding. The increased experiment complexity and duration led to a decreased performance than each single BCI. Nevertheless, the study contributes to understanding natural motor control, providing insights for more intuitive strategies for individuals with motor impairments.
Collapse
Affiliation(s)
- Valeria Mondini
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Andreea-Ioana Sburlea
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria.
- BioTechMed, Graz, Austria.
| |
Collapse
|
3
|
Borra D, Mondini V, Magosso E, Müller-Putz GR. Decoding movement kinematics from EEG using an interpretable convolutional neural network. Comput Biol Med 2023; 165:107323. [PMID: 37619325 DOI: 10.1016/j.compbiomed.2023.107323] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Continuous decoding of hand kinematics has been recently explored for the intuitive control of electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs). Deep neural networks (DNNs) are emerging as powerful decoders, for their ability to automatically learn features from lightly pre-processed signals. However, DNNs for kinematics decoding lack in the interpretability of the learned features and are only used to realize within-subject decoders without testing other training approaches potentially beneficial for reducing calibration time, such as transfer learning. Here, we aim to overcome these limitations by using an interpretable convolutional neural network (ICNN) to decode 2-D hand kinematics (position and velocity) from EEG in a pursuit tracking task performed by 13 participants. The ICNN is trained using both within-subject and cross-subject strategies, and also testing the feasibility of transferring the knowledge learned on other subjects on a new one. Moreover, the network eases the interpretation of learned spectral and spatial EEG features. Our ICNN outperformed most of the other state-of-the-art decoders, showing the best trade-off between performance, size, and training time. Furthermore, transfer learning improved kinematics prediction in the low data regime. The network attributed the highest relevance for decoding to the delta-band across all subjects, and to higher frequencies (alpha, beta, low-gamma) for a cluster of them; contralateral central and parieto-occipital sites were the most relevant, reflecting the involvement of sensorimotor, visual and visuo-motor processing. The approach improved the quality of kinematics prediction from the EEG, at the same time allowing interpretation of the most relevant spectral and spatial features.
Collapse
Affiliation(s)
- Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, Italy.
| | - Valeria Mondini
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy; Interdepartmental Center for Industrial Research on Health Sciences & Technologies, University of Bologna, Bologna, Italy
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria; BioTechMed, Graz, Austria
| |
Collapse
|
4
|
Batistić L, Lerga J, Stanković I. Detection of motor imagery based on short-term entropy of time-frequency representations. Biomed Eng Online 2023; 22:41. [PMID: 37143020 PMCID: PMC10157970 DOI: 10.1186/s12938-023-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Motor imagery is a cognitive process of imagining a performance of a motor task without employing the actual movement of muscles. It is often used in rehabilitation and utilized in assistive technologies to control a brain-computer interface (BCI). This paper provides a comparison of different time-frequency representations (TFR) and their Rényi and Shannon entropies for sensorimotor rhythm (SMR) based motor imagery control signals in electroencephalographic (EEG) data. The motor imagery task was guided by visual guidance, visual and vibrotactile (somatosensory) guidance or visual cue only. RESULTS When using TFR-based entropy features as an input for classification of different interaction intentions, higher accuracies were achieved (up to 99.87%) in comparison to regular time-series amplitude features (for which accuracy was up to 85.91%), which is an increase when compared to existing methods. In particular, the highest accuracy was achieved for the classification of the motor imagery versus the baseline (rest state) when using Shannon entropy with Reassigned Pseudo Wigner-Ville time-frequency representation. CONCLUSIONS Our findings suggest that the quantity of useful classifiable motor imagery information (entropy output) changes during the period of motor imagery in comparison to baseline period; as a result, there is an increase in the accuracy and F1 score of classification when using entropy features in comparison to the accuracy and the F1 of classification when using amplitude features, hence, it is manifested as an improvement of the ability to detect motor imagery.
Collapse
Affiliation(s)
- Luka Batistić
- University of Rijeka - Faculty of Engineering, Vukovarska 58, 51000, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejčić 2, 51000, Rijeka, Croatia
| | - Jonatan Lerga
- University of Rijeka - Faculty of Engineering, Vukovarska 58, 51000, Rijeka, Croatia.
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejčić 2, 51000, Rijeka, Croatia.
| | - Isidora Stanković
- University of Montenegro, Džordža Vašingtona bb, 81000, Podgorica, Montenegro
| |
Collapse
|
5
|
Cattan GH, Quemy A. Case-Based and Quantum Classification for ERP-Based Brain-Computer Interfaces. Brain Sci 2023; 13:brainsci13020303. [PMID: 36831846 PMCID: PMC9954540 DOI: 10.3390/brainsci13020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Low transfer rates are a major bottleneck for brain-computer interfaces based on electroencephalography (EEG). This problem has led to the development of more robust and accurate classifiers. In this study, we investigated the performance of variational quantum, quantum-enhanced support vector, and hypergraph case-based reasoning classifiers in the binary classification of EEG data from a P300 experiment. On the one hand, quantum classification is a promising technology to reduce computational time and improve learning outcomes. On the other hand, case-based reasoning has an excellent potential to simplify the preprocessing steps of EEG analysis. We found that the balanced training (prediction) accuracy of each of these three classifiers was 56.95 (51.83), 83.17 (50.25), and 71.10% (52.04%), respectively. In addition, case-based reasoning performed significantly lower with a simplified (49.78%) preprocessing pipeline. These results demonstrated that all classifiers were able to learn from the data and that quantum classification of EEG data was implementable; however, more research is required to enable a greater prediction accuracy because none of the classifiers were able to generalize from the data. This could be achieved by improving the configuration of the quantum classifiers (e.g., increasing the number of shots) and increasing the number of trials for hypergraph case-based reasoning classifiers through transfer learning.
Collapse
Affiliation(s)
| | - Alexandre Quemy
- Faculty of Computer Sciences, Poznań University of Technology, 60-965 Poznań, Poland
| |
Collapse
|
6
|
Jalilpour S, Müller-Putz G. Toward passive BCI: asynchronous decoding of neural responses to direction- and angle-specific perturbations during a simulated cockpit scenario. Sci Rep 2022; 12:6802. [PMID: 35473959 PMCID: PMC9042920 DOI: 10.1038/s41598-022-10906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Neuroimaging studies have provided proof that loss of balance evokes specific neural transient wave complexes in electroencephalography (EEG), called perturbation evoked potentials (PEPs). Online decoding of balance perturbations from ongoing EEG signals can establish the possibility of implementing passive brain-computer interfaces (pBCIs) as a part of aviation/driving assistant systems. In this study, we investigated the feasibility of identifying the existence and expression of perturbations in four different conditions by using EEG signals. Fifteen healthy participants experienced four various postural changes while they sat in a glider cockpit. Sudden perturbations were exposed by a robot connected to a glider and moved to the right and left directions with tilting angles of 5 and 10 degrees. Perturbations occurred in an oddball paradigm in which participants were not aware of the time and expression of the perturbations. We employed a hierarchical approach to separate the perturbation and rest, and then discriminate the expression of perturbations. The performance of the BCI system was evaluated by using classification accuracy and F1 score. Asynchronously, we achieved average accuracies of 89.83 and 73.64% and average F1 scores of 0.93 and 0.60 for binary and multiclass classification, respectively. These results manifest the practicality of pBCI for the detection of balance disturbances in a realistic situation.
Collapse
Affiliation(s)
- Shayan Jalilpour
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/4, 8010, Graz, Austria
| | - Gernot Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/4, 8010, Graz, Austria. .,BioTechMed, Graz, Austria.
| |
Collapse
|
7
|
Pulferer HS, Ásgeirsdóttir B, Mondini V, Sburlea AI, Müller-Putz GR. Continuous 2D trajectory decoding from attempted movement: across-session performance in able-bodied and feasibility in a spinal cord injured participant. J Neural Eng 2022; 19. [PMID: 35443233 DOI: 10.1088/1741-2552/ac689f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In people with a cervical spinal cord injury (SCI) or degenerative diseases leading to limited motor function, restoration of upper limb movement has been a goal of the brain-computer interface (BCI) field for decades. Recently, research from our group investigated non-invasive and real-time decoding of continuous movement in able-bodied participants from low-frequency brain signals during a target-tracking task. To advance our setup towards motor-impaired end users, we consequently chose a new paradigm based on attempted movement. APPROACH Here, we present the results of two studies. During the first study, data of ten able-bodied participants completing a target-tracking/shape-tracing task on-screen were investigated in terms of improvements in decoding performance due to user training. In a second study, a spinal cord injured participant underwent the same tasks. To investigate the merit of employing attempted movement in end users with SCI, data of the spinal cord injured participant were recorded twice; once within an observation only condition, and once while simultaneously attempting movement. MAIN RESULTS We observed mean correlation well above chance level for continuous motor decoding based on attempted movement in able-bodied participants. No global improvement over three sessions, both in sensor and source space, could be observed across all participants and movement parameters. In the participant with SCI, decoding performance well above chance was found. SIGNIFICANCE No presence of a learning effect in continuous attempted movement decoding in able-bodied participants could be observed. In contrast, non-significantly varying decoding patterns may promote the use of source space decoding in terms of generalized decoders utilizing transfer learning. Furthermore, above-chance correlations for attempted movement decoding ranging between those of observation only and executed movement were seen in one spinal cord injured participant, suggesting attempted movement decoding as a possible link between feasibility studies in able-bodied and actual applications in motor impaired end users.
Collapse
Affiliation(s)
| | | | - Valeria Mondini
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, Graz, 8010, AUSTRIA
| | - Andreea Ioana Sburlea
- Institute of Neural Engineering, Technische Universitat Graz, Stremayrgasse 16/IV, 8010 Graz, Austria, Graz, 8010, AUSTRIA
| | | |
Collapse
|