1
|
Charalambous CC, Bowden MG, Liang JN, Kautz SA, Hadjipapas A. Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking. Exp Brain Res 2024; 242:2309-2327. [PMID: 39107522 DOI: 10.1007/s00221-024-06906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected. We calculated the intermuscular coherences (IMC; alpha, beta, and low-gamma bands between SOL-LG, SOL-MG, LG-MG) and propulsive impulse using sEMG and GRF, respectively. We examined the interlimb and intralimb IMC comparisons and their relationships with propulsive impulse and walking speed. Interlimb IMC comparisons revealed that beta LG-MG (SSWS) and low-gamma SOL-LG (FWS) IMCs were degraded on the paretic side. Intralimb IMC comparisons revealed that only alpha IMCs (both speeds) exhibited a statistically significant difference to random coherence. Further, alpha LG-MG IMC was positively correlated with propulsive impulse in the paretic limb (SSWS). Alpha and beta/low-gamma bands may have a differential functional role, which may be related to the frequency-specificity of the underlying descending drives. The persistence of alpha band in plantarflexors and its strong positive relationship with propulsive impulse suggests relative alteration of corticoreticulospinal tract after stroke. These findings imply the presence of frequency-specific descending drives to walking-specific muscles in chronic stroke.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, Duke University School of Medicine, 40 Medicine Circle Box 3824, Durham, NC, 27710, USA.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA.
| | - Mark G Bowden
- Brooks Rehabilitation Clinical Research Center, 3901 S. University Blvd, Suite 101, Jacksonville, FL, 32216, USA
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, 4505 S Maryland Pkwy, Box 453029, Las Vegas, NV, 89154-3029, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
| |
Collapse
|
2
|
Charalambous CC, Hadjipapas A. Is there frequency-specificity in the motor control of walking? The putative differential role of alpha and beta oscillations. Front Syst Neurosci 2022; 16:922841. [PMID: 36387306 PMCID: PMC9650482 DOI: 10.3389/fnsys.2022.922841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2023] Open
Abstract
Alpha and beta oscillations have been assessed thoroughly during walking due to their potential role as proxies of the corticoreticulospinal tract (CReST) and corticospinal tract (CST), respectively. Given that damage to a descending tract after stroke can cause walking deficits, detailed knowledge of how these oscillations mechanistically contribute to walking could be utilized in strategies for post-stroke locomotor recovery. In this review, the goal was to summarize, synthesize, and discuss the existing evidence on the potential differential role of these oscillations on the motor descending drive, the effect of transcranial alternate current stimulation (tACS) on neurotypical and post-stroke walking, and to discuss remaining gaps in knowledge, future directions, and methodological considerations. Electrophysiological studies of corticomuscular, intermuscular, and intramuscular coherence during walking clearly demonstrate that beta oscillations are predominantly present in the dorsiflexors during the swing phase and may be absent post-stroke. The role of alpha oscillations, however, has not been pinpointed as clearly. We concluded that both animal and human studies should focus on the electrophysiological characterization of alpha oscillations and their potential role to the CReST. Another approach in elucidating the role of these oscillations is to modulate them and then quantify the impact on walking behavior. This is possible through tACS, whose beneficial effect on walking behavior (including boosting of beta oscillations in intramuscular coherence) has been recently demonstrated in both neurotypical adults and stroke patients. However, these studies still do not allow for specific roles of alpha and beta oscillations to be delineated because the tACS frequency used was much lower (i.e., individualized calculated gait frequency was used). Thus, we identify a main gap in the literature, which is tACS studies actually stimulating at alpha and beta frequencies during walking. Overall, we conclude that for beta oscillations there is a clear connection to descending drive in the corticospinal tract. The precise relationship between alpha oscillations and CReST remains elusive due to the gaps in the literature identified here. However, better understanding the role of alpha (and beta) oscillations in the motor control of walking can be used to progress and develop rehabilitation strategies for promoting locomotor recovery.
Collapse
Affiliation(s)
- Charalambos C. Charalambous
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
3
|
Diffusion Tensor Tractography Studies on Recovery Mechanisms of Aphasia in Stroke Patients: A Narrative Mini-Review. Healthcare (Basel) 2022; 10:healthcare10101927. [PMID: 36292374 PMCID: PMC9601675 DOI: 10.3390/healthcare10101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
Aphasia is a common and serious clinical feature of stroke. Various neural tracts are known to be involved in language processing. Diffusion tensor tractography (DTT) appears to be an appropriate imaging technique for the elucidation of the recovery mechanisms of aphasia in the language-related neural tracts in stroke patients. In this article, twelve previous DTT-based studies on the recovery mechanisms of aphasia in stroke were reviewed. We classified the twelve studies into the following three categories according to the recovery mechanisms: recovery via the neural tracts in the dominant hemisphere (eight studies), via transcallosal fibers (two studies), and via the neural tracts in the non-dominant hemisphere (two studies). Although there are various neural tracts for language processing, eight of the ten studies focused only on the role of the arcuate fasciculus (AF) in the recovery process. Consequently, it appears from the studies that only one recovery mechanism of aphasia via the restoration of the integrity of the injured AF in the dominant hemisphere was clearly demonstrated. However, because various neural tracts are involved in language processing, there could be other mechanisms that have not yet been elucidated. Therefore, further original studies involving a larger number of patients with aphasia in stroke should be encouraged forthwith. Further studies involving various lesion locations and severity levels of injuries to the language-related neural tracts are also necessary because the recovery mechanisms of aphasia in stroke could be dependent on these factors.
Collapse
|