1
|
Parmar N, Sirpal P, Sikora WA, Dewald JP, Refai HH, Yang Y. Beta-Band Cortico-Muscular Phase Coherence in Hemiparetic Stroke. Biomed Signal Process Control 2024; 97:106719. [PMID: 39493553 PMCID: PMC11526780 DOI: 10.1016/j.bspc.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Following a stroke, compensation for the loss of ipsilesional corticospinal and corticobulbar projections, results in increased reliance on contralesional motor pathways during paretic arm movement. Better understanding outcomes of post-stroke contralesional cortical adaptation outcomes may benefit more targeted post-stroke motor rehabilitation interventions. This proof-of-concept study involves eight healthy controls and ten post-stroke participants. Electroencephalographic (EEG) and deltoid electromyographic (EMG) data were collected during an upper-limb task. Phase coupling between beta-band motor cortex EEG and deltoid EMG was assessed using the Multi-Phase Locking Value (M-PLV) method. Different from classic cortico-muscular coherence, M-PLV allows for the calculation of dynamic phase coherence and delays, and is not affected by the non-stationary nature of EEG/EMG signals. Nerve conduction delay from the contralateral motor cortex to the deltoid muscle of the paretic arm was estimated. Our results show the ipsilateral (contralesional) motor cortex beta-band phase coherence behavior is altered in stroke participants, with significant differences in ipsilateral EEG-EMG coherence values, ipsilateral time course percentage above the significance threshold, and ipsilateral time course area above the significance threshold. M-PLV phase coherence analysis provides evidence for post-stroke contralesional motor adaptation, highlighting its increased role in the paretic shoulder abduction task. Nerve conduction delay between the motor cortices and deltoid muscle is significantly higher in stroke participants. Beta-band M-PLV phase coherence analysis shows greater phase-coherence distribution convergence between the ipsilateral (contralesional) and contralateral (ipsilesional) motor cortices in stroke participants, which is interpretable as evidence of maladaptive neural adaptation resulting from a greater reliance on the contralesional motor cortices.
Collapse
Affiliation(s)
- Nishaal Parmar
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - Parikshat Sirpal
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - William A Sikora
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Julius P.A. Dewald
- Northwestern University, Department of Physical Therapy and Human Movement Sciences, Chicago, Illinois, United States
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Hazem H. Refai
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - Yuan Yang
- Northwestern University, Department of Physical Therapy and Human Movement Sciences, Chicago, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Bioengineering, Grainger College of Engineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, Illinois, USA
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| |
Collapse
|
2
|
Colamarino E, Morone G, Toppi J, Riccio A, Cincotti F, Mattia D, Pichiorri F. A Scoping Review of Technology-Based Approaches for Upper Limb Motor Rehabilitation after Stroke: Are We Really Targeting Severe Impairment? J Clin Med 2024; 13:5414. [PMID: 39336901 PMCID: PMC11432574 DOI: 10.3390/jcm13185414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Technology-based approaches for upper limb (UL) motor rehabilitation after stroke are mostly designed for severely affected patients to increase their recovery chances. However, the available randomized controlled trials (RCTs) focused on the efficacy of technology-based interventions often include patients with a wide range of motor impairment. This scoping review aims at overviewing the actual severity of stroke patients enrolled in RCTs that claim to specifically address UL severe motor impairment. The literature search was conducted on the Scopus and PubMed databases and included articles from 2008 to May 2024, specifically RCTs investigating the impact of technology-based interventions on UL motor functional recovery after stroke. Forty-eight studies were selected. They showed that, upon patients' enrollment, the values of the UL Fugl-Meyer Assessment and Action Research Arm Test covered the whole range of both scales, thus revealing the non-selective inclusion of severely impaired patients. Heterogeneity in terms of numerosity, characteristics of enrolled patients, trial design, implementation, and reporting was present across the studies. No clear difference in the severity of the included patients according to the intervention type was found. Patient stratification upon enrollment is crucial to best direct resources to those patients who will benefit the most from a given technology-assisted approach (personalized rehabilitation).
Collapse
Affiliation(s)
- Emma Colamarino
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy; (E.C.); (J.T.); (F.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy; (E.C.); (J.T.); (F.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | - Angela Riccio
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | - Febo Cincotti
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy; (E.C.); (J.T.); (F.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | - Donatella Mattia
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | | |
Collapse
|
3
|
Cai G, Xu J, Zhang C, Jiang J, Chen G, Chen J, Liu Q, Xu G, Lan Y. Identifying biomarkers related to motor function in chronic stroke: A fNIRS and TMS study. CNS Neurosci Ther 2024; 30:e14889. [PMID: 39073240 DOI: 10.1111/cns.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Upper limb motor impairment commonly occurs after stroke, impairing quality of life. Brain network reorganization likely differs between subgroups with differing impairment severity. This study explored differences in functional connectivity (FC) and corticospinal tract (CST) integrity between patients with mild/moderate versus severe hemiplegia poststroke to clarify the neural correlates underlying motor deficits. METHOD Sixty chronic stroke patients with upper limb motor impairment were categorized into mild/moderate and severe groups based on Fugl-Meyer scores. Resting-state FC was assessed using functional near-infrared spectroscopy (fNIRS) to compare connectivity patterns between groups across motor regions. CST integrity was evaluated by inducing motor evoked potentials (MEP) via transcranial magnetic stimulation. RESULTS Compared to the mild/moderate group, the severe group exhibited heightened premotor cortex-primary motor cortex (PMC-M1) connectivity (t = 4.56, p < 0.01). Absence of MEP was also more frequent in the severe group (χ2 = 12.31, p = 0.01). Bayesian models effectively distinguished subgroups and identified the PMC-M1 connection as highly contributory (accuracy = 91.30%, area under the receiver operating characteristic curve [AUC] = 0.86). CONCLUSION Distinct patterns of connectivity and corticospinal integrity exist between stroke subgroups with differing impairments. Strengthened connectivity potentially indicates recruitment of additional motor resources to compensate for damage. These findings elucidate the neural correlates underlying motor deficits poststroke and could guide personalized, network-based therapies targeting predictive biomarkers to improve rehabilitation outcomes.
Collapse
Affiliation(s)
- Guiyuan Cai
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayue Xu
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cailing Zhang
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junbo Jiang
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gengbin Chen
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Jialin Chen
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Quan Liu
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou, China
| |
Collapse
|
4
|
Zeng Y, Cheng R, Zhang L, Fang S, Zhang S, Wang M, Lv Q, Dai Y, Gong X, Liang F. Clinical Comparison between HD-tDCS and tDCS for Improving Upper Limb Motor Function: A Randomized, Double-Blinded, Sham-Controlled Trial. Neural Plast 2024; 2024:2512796. [PMID: 38585306 PMCID: PMC10999289 DOI: 10.1155/2024/2512796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/15/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Background Stroke is a common and frequently occurring disease among middle-aged and elderly people, with approximately 55%-75% of patients remaining with upper limb dysfunction. How to promote the recovery of motor function at an early stage is crucial to the life of the patient. Objectives This study aimed to investigate whether high-definition transcranial direct current stimulation (HD-tDCS) of the primary motor cortex (M1) functional area in poststroke patients in the subacute phase is more effective in improving upper limb function than conventional tDCS. Methods This randomized, sham-controlled clinical trial included 69 patients with subcortical stroke. They were randomly divided into the HD-tDCS, anodal tDCS (a-tDCS), and sham groups. Each group received 20 sessions of stimulation. The patients were assessed using the Action Research Arm Test, Fugl-Meyer score for upper extremities, Motor Function Assessment Scale, and modified Barthel index (MBI) pretreatment and posttreatment. Results The intragroup comparison scores improved after 4 weeks of treatment. The HD-tDCS group showed a slightly greater, but nonsignificant improvement as compared to a-tDCS group in terms of mean change observed in function of trained items. The MBI score of the HD-tDCS group was maintained up to 8 weeks of follow-up and was higher than that in the a-tDCS group. Conclusion Both HD-tDCS and a-tDCS can improve upper limb motor function and daily activities of poststroke patients in the subacute stage. This trial is registered with ChiCTR2000031314.
Collapse
Affiliation(s)
- Yaqin Zeng
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruidong Cheng
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shan Fang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shaomin Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minmin Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Lv
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunlan Dai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Gong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feng Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Peng RHT, He D, James SA, Williamson JN, Skadden C, Jain S, Hassaneen W, Miranpuri A, Kaur A, Sarol JN, Yang Y. Determining the effects of targeted high-definition transcranial direct current stimulation on reducing post-stroke upper limb motor impairments-a randomized cross-over study. Trials 2024; 25:34. [PMID: 38195605 PMCID: PMC10775560 DOI: 10.1186/s13063-023-07886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Stroke is one of the leading causes of death in the USA and is a major cause of serious disability for adults. This randomized crossover study examines the effect of targeted high-definition transcranial direct current transcranial brain stimulation (tDCS) on upper extremity motor recovery in patients in the post-acute phase of stroke recovery. METHODS This randomized double-blinded cross-over study includes four intervention arms: anodal, cathodal, and bilateral brain stimulation, as well as a placebo stimulation. Participants receive each intervention in a randomized order, with a 2-week washout period between each intervention. The primary outcome measure is change in Motor Evoked Potential. Secondary outcome measures include the Fugl-Meyer Upper Extremity (FM-UE) score, a subset of FM-UE (A), related to the muscle synergies, and the Modified Ashworth Scale. DISCUSSION We hypothesize that anodal stimulation to the ipsilesional primary motor cortex will increase the excitability of the damaged cortico-spinal tract, reducing the UE flexion synergy and enhancing UE motor function. We further hypothesize that targeted cathodal stimulation to the contralesional premotor cortex will decrease activation of the cortico-reticulospinal tract (CRST) and the expression of the upper extremity (UE) flexion synergy and spasticity. Finally, we hypothesize bilateral stimulation will achieve both results simultaneously. Results from this study could improve understanding of the mechanism behind motor impairment and recovery in stroke and perfect the targeting of tDCS as a potential stroke intervention. With the use of appropriate screening, we anticipate no ethical or safety concerns. We plan to disseminate these research results to journals related to stroke recovery, engineering, and medicine. TRIAL REGISTRATION ClinicalTrials.gov NCT05479006 . Registered on 26 July 2022.
Collapse
Affiliation(s)
- Rita Huan-Ting Peng
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Urbana, IL, USA
| | - Dorothy He
- The University of Oklahoma College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shirley A James
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan N Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Sanjiv Jain
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amandeep Kaur
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jesus N Sarol
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Foundation Hospital, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|