1
|
Kim DH, Sim KB. A Novel Acute Discogenic Myelopathy Model Using Merocel ® Sponge: Comparison With Clip Compression Model in Rats. Korean J Neurotrauma 2023; 19:204-217. [PMID: 37431382 PMCID: PMC10329878 DOI: 10.13004/kjnt.2023.19.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
Objective Animal models of spinal cord injuries (SCIs) use rats to simulate human SCIs. Among the various techniques, clips have been used to reproduce the compression-contusion model. However, the mechanism of injury in discogenic incomplete SCI may differ from that in clip injury; however, a model has yet to be established. Previously, we issued a patent (No. 10-2053770) for a rat SCI model using Merocel®, a water-absorbing self-expanding polymer sponge. The objectives of this study were to compare the locomotor and histopathological changes between the Merocel®-compression model (MC group) and clip compression model (clip group). Methods This study included 4 groups of rats: MC (n=30), MC-sham (n=5), clip (n=30), and clip-sham (n=5). Locomotor function was evaluated in all groups using the Basso, Beattie, and Bresnahan (BBB) scoring system, 4 weeks after injury. Histopathological analyses included morphology, presence of inflammatory cells, microglial activation, and extent of neuronal damage, which were compared among the groups. Results The BBB scores in the MC group were significantly higher than those in the clip group throughout the 4 weeks (p<0.01). Neuropathological changes in the MC group were significantly less severe than those in the clip group. In addition, motor neurons were well preserved in the ventral horn of the MC group but poorly preserved in the ventral horn of the clip group. Conclusion The novel MC group can help elucidate the pathophysiology of acute discogenic incomplete SCIs and may be applied in various SCI therapeutic strategies.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Ki-Bum Sim
- Department of Neurosurgery, College of Medicine, Jeju National University, Jeju, Korea
| |
Collapse
|
2
|
Wong AW, Osborne PB, Keast JR. Axonal Injury Induces ATF3 in Specific Populations of Sacral Preganglionic Neurons in Male Rats. Front Neurosci 2018; 12:766. [PMID: 30405344 PMCID: PMC6207596 DOI: 10.3389/fnins.2018.00766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022] Open
Abstract
Compared to other neurons of the central nervous system, autonomic preganglionic neurons are unusual because most of their axon lies in the periphery. These axons are vulnerable to injury during surgical procedures, yet in comparison to peripheral neurons and somatic motor neurons, the impact of injury on preganglionic neurons is poorly understood. Here, we have investigated the impact of axotomy on sacral preganglionic neurons, a functionally diverse group of neurons required for micturition, defecation, and sexual function. We have previously observed that after axotomy, the injury-related transcription factor activating transcription factor-3 (ATF3) is upregulated in only half of these neurons (Peddie and Keast, 2011: PMID: 21283532). In the current study, we have investigated if this response is constrained to particular subclasses of preganglionic neurons that have specific functions or signaling properties. Seven days after unilateral pelvic nerve transection, we quantified sacral preganglionic neurons expressing ATF3, many but not all of which co-expressed c-Jun. This response was independent of soma size. Subclasses of sacral preganglionic neurons expressed combinations of somatostatin, calbindin, and neurokinin-1 receptor, each of which showed a similar response to injury. We also found that in contrast to thoracolumbar preganglionic neurons, the heat shock protein-25 (Hsp25) was not detected in naive sacral preganglionic neurons but was upregulated in many of these neurons after axotomy; the majority of these Hsp25 neurons expressed ATF3. Together, these studies reveal the molecular complexity of sacral preganglionic neurons and their responses to injury. The simultaneous upregulation of Hsp25 and ATF3 may indicate a distinct mechanism of regenerative capacity after injury.
Collapse
Affiliation(s)
- Agnes W Wong
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Gannon SM, Hawk K, Walsh BF, Coulibaly A, Isaacson LG. Retrograde influences of SCG axotomy on uninjured preganglionic neurons. Brain Res 2018; 1691:44-54. [PMID: 29679543 DOI: 10.1016/j.brainres.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
There is evidence that neuronal injury can affect uninjured neurons in the same neural circuit. The overall goal of this study was to understand the effects of peripheral nerve injury on uninjured neurons located in the central nervous system (CNS). As a model, we examined whether axotomy (transection of postganglionic axons) of the superior cervical ganglion (SCG) affected the uninjured, preganglionic neurons that innervate the SCG. At 7 days post-injury a reduction in choline acetyltransferase (ChAT) and synaptophysin immunoreactivity in the SCG, both markers for preganglionic axons, was observed, and this reduction persisted at 8 and 12 weeks post-injury. No changes were observed in the number or size of the parent cell bodies in the intermediolateral cell column (IML) of the spinal cord, yet synaptic input to the IML neurons was decreased at both 8 and 12 weeks post-injury. In order to understand the mechanisms underlying these changes, protein levels of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) were examined and reductions were observed at 7 days post-injury in both the SCG and spinal cord. Taken together these results suggest that axotomy of the SCG led to reduced BDNF in the SCG and spinal cord, which in turn influenced ChAT and synaptophysin expression in the SCG and also contributed to the altered synaptic input to the IML neurons. More generally these findings provide evidence that the effects of peripheral injury can cascade into the CNS and affect uninjured neurons.
Collapse
Affiliation(s)
- Sean M Gannon
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Kiel Hawk
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States
| | - Brian F Walsh
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Aminata Coulibaly
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States
| | - Lori G Isaacson
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States; Department of Biology, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
4
|
Identification of the Avulsion-Injured Spinal Motoneurons. J Mol Neurosci 2015; 57:142-51. [PMID: 26025326 PMCID: PMC4543425 DOI: 10.1007/s12031-015-0588-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Abstract
In laboratory studies, counting the spinal motoneurons that survived axonal injury is a major method to estimate the severity and regenerative capacity of the injured motoneurons after the axonal injury and rehabilitation surgery. However, the typical motoneuron marker, the choline acetyltransferase (ChAT), could not be detected in the injured motoneurons within the first 3–4 weeks postinjury. It is necessary to explore the useful and reliable specific phenotypic markers to assess the fate of injured motoneurons in axonal injury. Here, we used the fluorogold to retrograde trace the injured motoneurons in the spinal cord and studied the expression patterns of the alpha-motoneuron marker, the neuronal nuclei DNA-binding protein (NeuN) and the peripheral nerve injury marker, the activating transcriptional factor (ATF-3), and the oxidative stress marker, the neuronal nitric oxide synthase (nNOS) within the first 4 weeks of the root avulsion of the right brachial plexus (BPRA) in the adult male Sprague-Dawley rats. Our results showed that ATF-3 was rapidly induced and sustained to express only in the nuclei of the fluorogold-labeled injured motoneurons but none in the unaffected motoneurons from the 24 h of the injury; meanwhile, the NeuN almost disappeared in the avulsion-affected motoneurons within the first 4 weeks. The nNOS was not detected in the motoneurons until the second week of the injury. On the basis of the present data, we suggest that ATF-3 labels avulsion-injured motoneurons while NeuN and nNOS are poor markers within the first 4 weeks of BPRA.
Collapse
|
5
|
Forrest SL, Payne SC, Keast JR, Osborne PB. Peripheral injury of pelvic visceral sensory nerves alters GFRα (GDNF family receptor alpha) localization in sensory and autonomic pathways of the sacral spinal cord. Front Neuroanat 2015; 9:43. [PMID: 25914629 PMCID: PMC4392586 DOI: 10.3389/fnana.2015.00043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 02/04/2023] Open
Abstract
GDNF (glial cell line-derived neurotrophic factor), neurturin and artemin use their co-receptors (GFRα1, GFRα2 and GFRα3, respectively) and the tyrosine kinase Ret for downstream signaling. In rodent dorsal root ganglia (DRG) most of the unmyelinated and some myelinated sensory afferents express at least one GFRα. The adult function of these receptors is not completely elucidated but their activity after peripheral nerve injury can facilitate peripheral and central axonal regeneration, recovery of sensation, and sensory hypersensitivity that contributes to pain. Our previous immunohistochemical studies of spinal cord and sciatic nerve injuries in adult rodents have identified characteristic changes in GFRα1, GFRα2 or GFRα3 in central spinal cord axons of sensory neurons located in DRG. Here we extend and contrast this analysis by studying injuries of the pelvic and hypogastric nerves that contain the majority of sensory axons projecting to the pelvic viscera (e.g., bladder and lower bowel). At 7 d, we detected some effects of pelvic but not hypogastric nerve transection on the ipsilateral spinal cord. In sacral (L6-S1) cord ipsilateral to nerve injury, GFRα1-immunoreactivity (IR) was increased in medial dorsal horn and CGRP-IR was decreased in lateral dorsal horn. Pelvic nerve injury also upregulated GFRα1- and GFRα3-IR terminals and GFRα1-IR neuronal cell bodies in the sacral parasympathetic nucleus that provides the spinal parasympathetic preganglionic output to the pelvic nerve. This evidence suggests peripheral axotomy has different effects on somatic and visceral sensory input to the spinal cord, and identifies sensory-autonomic interactions as a possible site of post-injury regulation.
Collapse
Affiliation(s)
- Shelley L Forrest
- Pain Management Research Institute (Kolling Institute), University of Sydney at the Royal North Shore Hospital Sydney, NSW, Australia
| | - Sophie C Payne
- Department of Anatomy and Neuroscience, The University of Melbourne Melbourne, VIC, Australia
| | - Janet R Keast
- Pain Management Research Institute (Kolling Institute), University of Sydney at the Royal North Shore Hospital Sydney, NSW, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne Melbourne, VIC, Australia
| | - Peregrine B Osborne
- Pain Management Research Institute (Kolling Institute), University of Sydney at the Royal North Shore Hospital Sydney, NSW, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
6
|
Regeneration of sensory but not motor axons following visceral nerve injury. Exp Neurol 2015; 266:127-42. [DOI: 10.1016/j.expneurol.2015.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
|
7
|
McCarthy CJ, Tomasella E, Malet M, Seroogy KB, Hökfelt T, Villar MJ, Gebhart GF, Brumovsky PR. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord. Brain Struct Funct 2015; 221:1985-2004. [PMID: 25749859 DOI: 10.1007/s00429-015-1019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.
Collapse
Affiliation(s)
- Carly J McCarthy
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - Eugenia Tomasella
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Malet
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marcelo J Villar
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pablo R Brumovsky
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Ding DX, Tian FF, Guo JL, Li K, He JX, Song MY, Li L, Huang X. Dynamic expression patterns of ATF3 and p53 in the hippocampus of a pentylenetetrazole-induced kindling model. Mol Med Rep 2014; 10:645-51. [PMID: 24859284 PMCID: PMC4094765 DOI: 10.3892/mmr.2014.2256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/25/2014] [Indexed: 11/28/2022] Open
Abstract
Epilepsy is a common and often deleterious neurological condition. Emerging evidence has demonstrated the roles of innate immunity and the associated inflammatory processes in epilepsy. In a previous study, we found that Toll-like receptors (TLRs) are upregulated and promote mossy fiber sprouting (MFS) in an epileptic model. As downstream effectors of TLRs, the activating transcription factor 3 (ATF3) and p53 proteins were shown to be involved in neurite outgrowth. In the present study, we hypothesized that ATF3 and p53 participate in the process of epilepsy and can affect MFS. To investigate this hypothesis, we examined the expression of ATF3 and p53 in hippocampal tissues of rats kindled by pentylenetetrazole (PTZ) using immunofluorescence, immunohistochemistry and western blotting. MFS was evaluated by Timm staining in the hippocampus. Results from these experiments revealed that expression of ATF3 and p53 is significantly higher (p<0.05) in the CA3 area of the hippocampus in the PTZ-treated group compared to the control group. ATF3 expression gradually increased from 3 days to 4 weeks, peaked at 4 weeks and decreased slightly at 6 weeks in the PTZ group, while the expression of p53 was maintained at similar levels at different time-points following PTZ treatment. No obvious difference in the expression of these proteins was observed between the PTZ and the control group in the dentate gyrus (DG) area (p>0.05). The degree of MFS in the PTZ group peaked at 4 weeks and was maintained at a high level until 6 weeks post-PTZ treatment. In conclusion, ATF3 and p53 may be involved in the occurrence of seizure and play critical roles in MFS in the PTZ kindling model.
Collapse
Affiliation(s)
- Dong-Xue Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fa-Fa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jia-Ling Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kai Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jing-Xuan He
- Science Research Center, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Ming-Yu Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li Li
- Department of Neurology, Wangwang Hospital, Changsha, Hunan 410016, P.R. China
| | - Xia Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
9
|
Wilson NM, Wright DE. Experimental motor neuropathy in diabetes. HANDBOOK OF CLINICAL NEUROLOGY 2014; 126:461-7. [DOI: 10.1016/b978-0-444-53480-4.00030-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Coulibaly AP, Gannon SM, Hawk K, Walsh BF, Isaacson LG. Transection of preganglionic axons leads to CNS neuronal plasticity followed by survival and target reinnervation. Auton Neurosci 2013; 179:49-59. [PMID: 23891533 DOI: 10.1016/j.autneu.2013.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/17/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
The goals of the present study were to investigate the changes in sympathetic preganglionic neurons following transection of distal axons in the cervical sympathetic trunk (CST) that innervate the superior cervical ganglion (SCG) and to assess changes in the protein expression of brain derived neurotrophic factor (BDNF) and its receptor TrkB in the thoracic spinal cord. At 1 week, a significant decrease in soma volume and reduced soma expression of choline acetyltransferase (ChAT) in the intermediolateral cell column (IML) of T1 spinal cord were observed, with both ChAT-ir and non-immunoreactive neurons expressing the injury marker activating transcription factor 3. These changes were transient, and at later time points, ChAT expression and soma volume returned to control values and the number of ATF3 neurons declined. No evidence for cell loss or neuronal apoptosis was detected at any time point. Protein levels of BDNF and/or full length TrkB in the spinal cord were increased throughout the survival period. In the SCG, both ChAT-ir axons and ChAT protein remained decreased at 16 weeks, but were increased compared to the 10 week time point. These results suggest that though IML neurons show reduced ChAT expression and cell volume at 1 week following CST transection, at later time points, the neurons recovered and exhibited no significant signs of neurodegeneration. The alterations in BDNF and/or TrkB may have contributed to the survival of the IML neurons and the recovery of ChAT expression, as well as to the reinnervation of the SCG.
Collapse
Affiliation(s)
- Aminata P Coulibaly
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States
| | | | | | | | | |
Collapse
|
11
|
Wiese CB, Ireland S, Fleming NL, Yu J, Valerius MT, Georgas K, Chiu HS, Brennan J, Armstrong J, Little MH, McMahon AP, Southard-Smith EM. A genome-wide screen to identify transcription factors expressed in pelvic Ganglia of the lower urinary tract. Front Neurosci 2012; 6:130. [PMID: 22988430 PMCID: PMC3439845 DOI: 10.3389/fnins.2012.00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
Relative positions of neurons within mature murine pelvic ganglia based on expression of neurotransmitters have been described. However the spatial organization of developing innervation in the murine urogenital tract (UGT) and the gene networks that regulate specification and maturation of neurons within the pelvic ganglia of the lower urinary tract (LUT) are unknown. We used whole-mount immunohistochemistry and histochemical stains to localize neural elements in 15.5 days post coitus (dpc) fetal mice. To identify potential regulatory factors expressed in pelvic ganglia, we surveyed expression patterns for known or probable transcription factors (TF) annotated in the mouse genome by screening a whole-mount in situ hybridization library of fetal UGTs. Of the 155 genes detected in pelvic ganglia, 88 encode TFs based on the presence of predicted DNA-binding domains. Neural crest (NC)-derived progenitors within the LUT were labeled by Sox10, a well-known regulator of NC development. Genes identified were categorized based on patterns of restricted expression in pelvic ganglia, pelvic ganglia and urethral epithelium, or pelvic ganglia and urethral mesenchyme. Gene expression patterns and the distribution of Sox10+, Phox2b+, Hu+, and PGP9.5+ cells within developing ganglia suggest previously unrecognized regional segregation of Sox10+ progenitors and differentiating neurons in early development of pelvic ganglia. Reverse transcription-PCR of pelvic ganglia RNA from fetal and post-natal stages demonstrated that multiple TFs maintain post-natal expression, although Pax3 is extinguished before weaning. Our analysis identifies multiple potential regulatory genes including TFs that may participate in segregation of discrete lineages within pelvic ganglia. The genes identified here are attractive candidate disease genes that may now be further investigated for their roles in malformation syndromes or in LUT dysfunction.
Collapse
Affiliation(s)
- Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hunt D, Raivich G, Anderson PN. Activating transcription factor 3 and the nervous system. Front Mol Neurosci 2012; 5:7. [PMID: 22347845 PMCID: PMC3278981 DOI: 10.3389/fnmol.2012.00007] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/20/2012] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) belongs to the ATF/cyclic AMP responsive element binding family of transcription factors and is often described as an adaptive response gene whose activity is usually regulated by stressful stimuli. Although expressed in a number of splice variants and generally recognized as a transcriptional repressor, ATF3 has the ability to interact with a number of other transcription factors including c-Jun to form complexes which not only repress, but can also activate various genes. ATF3 expression is modulated mainly at the transcriptional level and has markedly different effects in different types of cell. The levels of ATF3 mRNA and protein are normally very low in neurons and glia but their expression is rapidly upregulated in response to injury. ATF3 expression in neurons is closely linked to their survival and the regeneration of their axons following axotomy, and that in peripheral nerves correlates with the generation of a Schwann cell phenotype that is conducive to axonal regeneration. ATF3 is also induced by Toll-like receptor (TLR) ligands but acts as a negative regulator of TLR signaling, suppressing the innate immune response which is involved in immuno-surveillance and can enhance or reduce the survival of injured neurons and promote the regeneration of their axons.
Collapse
Affiliation(s)
- David Hunt
- Medical Education Centre, Newham University Hospital London, UK
| | | | | |
Collapse
|