1
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
2
|
Nair A, Chakraborty S, Saha B. CD40 induces selective routing of Ras isoforms to subcellular compartments. J Cell Commun Signal 2023; 17:1009-1021. [PMID: 37126117 PMCID: PMC10409697 DOI: 10.1007/s12079-023-00747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Ras GTPases are central to cellular signaling and oncogenesis. The three loci of the Ras gene encode for four protein isoforms namely Harvey-Ras (H-Ras), Kirsten-Ras (K-Ras 4A and 4B), and Neuroblastoma-Ras (N-Ras) which share ~ 80% sequence similarity and used to be considered functionally redundant. The small molecule inhibitors of Ras lack specificity for the isoforms leading to widespread toxicity in Ras-targeted therapeutics. Ras isoforms' tissue-specific expression and selective association with carcinogenesis, embryonic development, and infection suggested their non-redundancy. We show that CD40, an antigen-presenting cell (APC)-expressed immune receptor, induces selective relocation of H-Ras, K-Ras, and N-Ras to the Plasma membrane (PM) lipid rafts, mitochondria, endoplasmic reticulum (ER), but not to the Golgi complex (GC). The two palmitoylated Ras isoforms-H-Ras and N-Ras-have a similar pattern of colocalization into the lipid-rich raft microdomain of the PM at early time points when compared to non-palmitoylated K-Ras (4B) with polylysine residues. CD40-induced trafficking of H-Ras and K-Ras to mitochondria and ER was found to be similar but different from that of N-Ras. Trafficking of all the Ras isoforms to the GC was independent of CD40 stimulation. The receptor-driven trafficking and spatial segregation of H-Ras, K-Ras, and N-Ras imply isoform-specific subcellular signaling platforms for the functional non-redundancy of Ras isoforms. PDB structures have been modified to illustrate various signaling proteins.
Collapse
Affiliation(s)
- Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| | - Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, 1100029, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
3
|
Serdar M, Herz J, Kempe K, Winterhager E, Jastrow H, Heumann R, Felderhoff-Müser U, Bendix I. Protection of Oligodendrocytes Through Neuronal Overexpression of the Small GTPase Ras in Hyperoxia-Induced Neonatal Brain Injury. Front Neurol 2018; 9:175. [PMID: 29619004 PMCID: PMC5871665 DOI: 10.3389/fneur.2018.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/06/2018] [Indexed: 12/29/2022] Open
Abstract
Prematurely born infants are highly susceptible to various environmental factors, such as inflammation, drug exposure, and also high environmental oxygen concentrations. Hyperoxia induces perinatal brain injury affecting white and gray matter development. It is well known that mitogen-activated protein kinase signaling is involved in cell survival, proliferation, and differentiation. Therefore, we aim to elucidate cell-specific responses of neuronal overexpression of the small GTPase Ras on hyperoxia-mediated brain injury. Six-day-old (P6) synRas mice (neuronal Ras overexpression under the synapsin promoter) or wild-type littermates were kept under hyperoxia (80% oxygen) or room air (21% oxygen) for 24 h. Apoptosis was analyzed by Western blot of cleaved Caspase-3 and neuronal and oligodendrocyte degeneration via immunohistochemistry. Short-term differentiation capacity of oligodendrocytes was assessed by quantification of myelin basic protein expression at P11. Long-lasting changes of hyperoxia-induced alteration of myelin structures were evaluated via transmission electron microscopy in young adult animals (P42). Western blot analysis of active Caspase-3 demonstrates a significant upregulation in wild-type littermates exposed to hyperoxia whereas synRas mice did not show any marked alteration of cleaved Caspase-3 protein levels. Immunohistochemistry revealed a protective effect of neuronal Ras overexpression on neuron and oligodendrocyte survival. Hyperoxia-induced hypomyelination in wild-type littermates was restored in synRas mice. These short-term protective effects through promotion of neuronal survival translated into long-lasting improvement of ultrastructural alterations of myelin sheaths in mice with neuronal overexpression of Ras compared with hyperoxic wild-type mice. Our data suggest that transgenic increase of neuronal Ras activity in the immature brain results in secondary protection of oligodendrocytes from hyperoxia-induced white matter brain injury.
Collapse
Affiliation(s)
- Meray Serdar
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Karina Kempe
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- Imaging Center Essen, EM Unit, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Imaging Center Essen, EM Unit, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rolf Heumann
- Biochemistry II, Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Rodriguez RL, Albeck JG, Taha AY, Ori-McKenney KM, Recanzone GH, Stradleigh TW, Hernandez BC, Tang FYV, Chiang EPI, Cruz-Orengo L. Impact of diet-derived signaling molecules on human cognition: exploring the food-brain axis. NPJ Sci Food 2017; 1:2. [PMID: 31304244 PMCID: PMC6548416 DOI: 10.1038/s41538-017-0002-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/02/2023] Open
Abstract
The processes that define mammalian physiology evolved millions of years ago in response to ancient signaling molecules, most of which were acquired by ingestion and digestion. In this way, evolution inextricably linked diet to all major physiological systems including the nervous system. The importance of diet in neurological development is well documented, although the mechanisms by which diet-derived signaling molecules (DSMs) affect cognition are poorly understood. Studies on the positive impact of nutritive and non-nutritive bioactive molecules on brain function are encouraging but lack the statistical power needed to demonstrate strong positive associations. Establishing associations between DSMs and cognitive functions like mood, memory and learning are made even more difficult by the lack of robust phenotypic markers that can be used to accurately and reproducibly measure the effects of DSMs. Lastly, it is now apparent that processes like neurogenesis and neuroplasticity are embedded within layers of interlocked signaling pathways and gene regulatory networks. Within these interdependent pathways and networks, the various transducers of DSMs are used combinatorially to produce those emergent adaptive gene expression responses needed for stimulus-induced neurogenesis and neuroplasticity. Taken together, it appears that cognition is encoded genomically and modified by epigenetics and epitranscriptomics to produce complex transcriptional programs that are exquisitely sensitive to signaling molecules from the environment. Models for how DSMs mediate the interplay between the environment and various neuronal processes are discussed in the context of the food-brain axis.
Collapse
Affiliation(s)
- Raymond L. Rodriguez
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - John G. Albeck
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Kassandra M. Ori-McKenney
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Gregg H. Recanzone
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
- Center for Neuroscience, College of Biological Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Tyler W. Stradleigh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
- Center for Neuroscience, College of Biological Sciences, University of California, Davis, Davis, CA 95616 USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Bronte C. Hernandez
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | | | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
5
|
Gómez C, Jimeno D, Fernández-Medarde A, García-Navas R, Calzada N, Santos E. Ras-GRF2 regulates nestin-positive stem cell density and onset of differentiation during adult neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 2017; 85:127-147. [PMID: 28966131 DOI: 10.1016/j.mcn.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022] Open
Abstract
Various parameters of neurogenesis were analyzed in parallel in the two neurogenic areas (the Dentate Gyrus[DG] and the Subventricular Zone[SVZ]/Rostral Migratory Stream[RMS]/Main Olfactory Bulb[MOB] neurogenic system) of adult WT and KO mouse strains for the Ras-GRF1/2 genes (Ras-GRF1-KO, Ras-GRF2-KO, Ras-GRF1/2-DKO). Significantly reduced numbers of doublecortin[DCX]-positive cells were specifically observed in the DG, but not the SVZ/RMS/MOB neurogenic region, of Ras-GRF2-KO and Ras-GRF1/2-DKO mice indicating that this novel Ras-GRF2-dependent phenotype is spatially restricted to a specific neurogenic area. Consistent with a role of CREB as mediator of Ras-GRF2 function in neurogenesis, the density of p-CREB-positive cells was also specifically reduced in all neurogenic regions of Ras-GRF2-KO and DKO mice. Similar levels of early neurogenic proliferation markers (Ki67, BrdU) were observed in all different Ras-GRF genotypes analyzed but significantly elevated levels of nestin-immunolabel, particularly of undifferentiated, highly ramified, A-type nestin-positive neurons were specifically detected in the DG but not the SVZ/RMS/MOB of Ras-GRF2-KO and DKO mice. Together with assays of other neurogenic markers (GFAP, Sox2, Tuj1, NeuN), these observations suggest that the deficit of DCX/p-CREB-positive cells in the DG of Ras-GRF2-depleted mice does not involve impaired neuronal proliferation but rather delayed transition from the stem cell stage to the differentiation stages of the neurogenic process. This model is also supported by functional analyses of DG-derived neurosphere cultures and transcriptional characterization of the neurogenic areas of mice of all relevant Ras-GRF genotypes suggesting that the neurogenic role of Ras-GRF2 is exerted in a cell-autonomous manner through a specific transcriptional program.
Collapse
Affiliation(s)
- Carmela Gómez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain.
| |
Collapse
|
6
|
Abstract
The small GTPase Ras is a universal eukaryotic cytoplasmic membrane-anchored protein, which regulates diverse downstream signal transduction pathways that play an important role in the proper functioning of neurons. Ras activity is a central regulator of structural and functional synaptic plasticity in the adult nervous system, where it channels neuronal responses to various extracellular cues allowing the organism to adapt to complex environmental stimuli. The suprachiasmatic nucleus (SCN) is the principle pacemaker of the circadian clock, and the circadian and photic regulation of Ras activity in the SCN is an important modulator of the clockwork. We have generated transgenic mouse expressing constitutively active V12-H-Ras selectively in neurons via a synapsin I promoter (synRas mice), which serves as a suitable model to study the role of neuronal Ras signaling. Modulation of Ras activity affects ERK1,2/CREB signaling and glycogen synthase kinase-3 beta expression in the SCN, which in turn modify the photoentrainment of the clock and the fine tuning the circadian period length. The main focus of this review is to offer an overview of the function of Ras signaling in the circadian rhythm and its potential role in learning and memory consolidation.
Collapse
Affiliation(s)
- Tsvetan Serchov
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Rolf Heumann
- Biochemistry II, Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Systemic mechanism of taste, flavour and palatability in brain. Appl Biochem Biotechnol 2015; 175:3133-47. [PMID: 25733187 DOI: 10.1007/s12010-015-1488-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
Taste is considered as one of the five traditional senses and has the ability to detect the flavour of food and certain minerals. Information of taste is transferred to the cortical gustatory area for identification and discrimination of taste quality. Animals have memory recognition power to maintain the familiar foods which are already encountered. Animal shows neophobic response when it encounters novel taste and shows no hesitation when the food is known to be safe. Palatability is the hedonic reward provided by foods and fluids. Palatability is closely related to neurochemicals, and this chemical influences the consumption of food and fluid. Even though, the food is palatable that can become aversive and avoided as a consequence of postingestional unpleasant experience such as malaise. This review presents the overall view on brain mechanisms of taste, flavour and palatability.
Collapse
|
8
|
Functional combination strategy for prioritization of human miRNA target. Gene 2014; 533:132-41. [DOI: 10.1016/j.gene.2013.09.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023]
|
9
|
Hudak EM, Edwards JD, Athilingam P, McEvoy CL. A Comparison of Cognitive and Everyday Functional Performance among Older Adults With and Without Hypertension. Clin Gerontol 2013; 36:113-131. [PMID: 25346567 PMCID: PMC4208459 DOI: 10.1080/07317115.2012.749322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Secondary data analyses examined the differences in cognitive and instrumental activities of daily living (IADL) performance among hypertensive individuals taking one of four classes of antihypertensive medications, hypertensive individuals not taking any antihypertensive medications, and normotensive individuals (N=770). After adjusting for covariates, significant group differences were evident on all measures (speed of processing, motor speed, reaction time, ps < .05) except memory and Timed IADL (ps > .05). Follow-up a priori planned comparisons compared hypertensive individuals not on medications to each of the four antihypertensive medication groups. Results indicated that only those on beta blockers (BB) were significantly slower in speed of processing (ps < .05). A priori planned comparisons also revealed that normotensive individuals had better cognitive performance on measures of processing speed, motor speed, and reaction time than hypertensive individuals regardless of antihypertensive medication use. Additionally, normotensive individuals performed significantly better on memory (Digit and Spatial Span) than individuals with hypertension on medications. No differences were found between groups on memory (Hopkins Verbal Learning Test) or Timed IADL performance. With regard to antihypertensive medications, the use of BBs was associated with slowed processing speed. These analyses provide empirical evidence that hypertension primarily impacts speed of processing, but not severe enough to affect IADL performance. Given the contribution of processing speed to memory and executive function performance, this is an important finding. Clinicians need to take into consideration the potential negative impact that BBs may have on cognition when determining the best treatment of hypertension among older adult patients.
Collapse
|