1
|
Nanami T, Kohno T. Piecewise quadratic neuron model: A tool for close-to-biology spiking neuronal network simulation on dedicated hardware. Front Neurosci 2023; 16:1069133. [PMID: 36699524 PMCID: PMC9870328 DOI: 10.3389/fnins.2022.1069133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023] Open
Abstract
Spiking neuron models simulate neuronal activities and allow us to analyze and reproduce the information processing of the nervous system. However, ionic-conductance models, which can faithfully reproduce neuronal activities, require a huge computational cost, while integral-firing models, which are computationally inexpensive, have some difficulties in reproducing neuronal activities. Here we propose a Piecewise Quadratic Neuron (PQN) model based on a qualitative modeling approach that aims to reproduce only the key dynamics behind neuronal activities. We demonstrate that PQN models can accurately reproduce the responses of ionic-conductance models of major neuronal classes to stimulus inputs of various magnitudes. In addition, the PQN model is designed to support the efficient implementation on digital arithmetic circuits for use as silicon neurons, and we confirm that the PQN model consumes much fewer circuit resources than the ionic-conductance models. This model intends to serve as a tool for building a large-scale closer-to-biology spiking neural network.
Collapse
Affiliation(s)
- Takuya Nanami
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Kohno
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Abu-Hassan K, Taylor JD, Morris PG, Donati E, Bortolotto ZA, Indiveri G, Paton JFR, Nogaret A. Optimal solid state neurons. Nat Commun 2019; 10:5309. [PMID: 31796727 PMCID: PMC6890780 DOI: 10.1038/s41467-019-13177-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
Bioelectronic medicine is driving the need for neuromorphic microcircuits that integrate raw nervous stimuli and respond identically to biological neurons. However, designing such circuits remains a challenge. Here we estimate the parameters of highly nonlinear conductance models and derive the ab initio equations of intracellular currents and membrane voltages embodied in analog solid-state electronics. By configuring individual ion channels of solid-state neurons with parameters estimated from large-scale assimilation of electrophysiological recordings, we successfully transfer the complete dynamics of hippocampal and respiratory neurons in silico. The solid-state neurons are found to respond nearly identically to biological neurons under stimulation by a wide range of current injection protocols. The optimization of nonlinear models demonstrates a powerful method for programming analog electronic circuits. This approach offers a route for repairing diseased biocircuits and emulating their function with biomedical implants that can adapt to biofeedback.
Collapse
Affiliation(s)
- Kamal Abu-Hassan
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Joseph D Taylor
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Paul G Morris
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Elisa Donati
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Zuner A Bortolotto
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.,Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| | - Alain Nogaret
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Khoyratee F, Grassia F, Saïghi S, Levi T. Optimized Real-Time Biomimetic Neural Network on FPGA for Bio-hybridization. Front Neurosci 2019; 13:377. [PMID: 31068781 PMCID: PMC6491680 DOI: 10.3389/fnins.2019.00377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Neurological diseases can be studied by performing bio-hybrid experiments using a real-time biomimetic Spiking Neural Network (SNN) platform. The Hodgkin-Huxley model offers a set of equations including biophysical parameters which can serve as a base to represent different classes of neurons and affected cells. Also, connecting the artificial neurons to the biological cells would allow us to understand the effect of the SNN stimulation using different parameters on nerve cells. Thus, designing a real-time SNN could useful for the study of simulations of some part of the brain. Here, we present a different approach to optimize the Hodgkin-Huxley equations adapted for Field Programmable Gate Array (FPGA) implementation. The equations of the conductance have been unified to allow the use of same functions with different parameters for all ionic channels. The low resources and high-speed implementation also include features, such as synaptic noise using the Ornstein-Uhlenbeck process and different synapse receptors including AMPA, GABAa, GABAb, and NMDA receptors. The platform allows real-time modification of the neuron parameters and can output different cortical neuron families like Fast Spiking (FS), Regular Spiking (RS), Intrinsically Bursting (IB), and Low Threshold Spiking (LTS) neurons using a Digital to Analog Converter (DAC). Gaussian distribution of the synaptic noise highlights similarities with the biological noise. Also, cross-correlation between the implementation and the model shows strong correlations, and bifurcation analysis reproduces similar behavior compared to the original Hodgkin-Huxley model. The implementation of one core of calculation uses 3% of resources of the FPGA and computes in real-time 500 neurons with 25,000 synapses and synaptic noise which can be scaled up to 15,000 using all resources. This is the first step toward neuromorphic system which can be used for the simulation of bio-hybridization and for the study of neurological disorders or the advanced research on neuroprosthesis to regain lost function.
Collapse
Affiliation(s)
- Farad Khoyratee
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Filippo Grassia
- LTI Laboratory, EA 3899, University of Picardie Jules Verne, Amiens, France
| | - Sylvain Saïghi
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Timothée Levi
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Closed-Loop Systems and In Vitro Neuronal Cultures: Overview and Applications. ADVANCES IN NEUROBIOLOGY 2019; 22:351-387. [DOI: 10.1007/978-3-030-11135-9_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Natarajan A, Hasler J. Hodgkin-Huxley Neuron and FPAA Dynamics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:918-926. [PMID: 30010587 DOI: 10.1109/tbcas.2018.2837055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present the experimental silicon results on the dynamics of a Hodgkin-Huxley neuron implemented on a reconfigurable platform. The circuit has been inspired by the similarity between biology and silicon, by modeling ion channels and their time constants. Another significant motivation behind this paper is to make the system available to circuit designers as well as users in the neuroscience community. The open-source tool infrastructure and a remote system ease the accessibility of our system to a number of users. We demonstrate the reproducibility of the results by replicating the dynamics across different boards along with responses from different inputs and with different parameters. The reconfigurability enables one to make use of a single primary design to obtain a variety of results. The measurements are taken from the system compiled on a field programmable analog array fabricated on a 350-nm process.
Collapse
|
6
|
Spike pattern recognition using artificial neuron and spike-timing-dependent plasticity implemented on a multi-core embedded platform. ARTIFICIAL LIFE AND ROBOTICS 2017. [DOI: 10.1007/s10015-017-0421-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Wang J, Breen D, Akinin A, Broccard F, Abarbanel HDI, Cauwenberghs G. Assimilation of Biophysical Neuronal Dynamics in Neuromorphic VLSI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1258-1270. [PMID: 29324422 DOI: 10.1109/tbcas.2017.2776198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Representing the biophysics of neuronal dynamics and behavior offers a principled analysis-by-synthesis approach toward understanding mechanisms of nervous system functions. We report on a set of procedures assimilating and emulating neurobiological data on a neuromorphic very large scale integrated (VLSI) circuit. The analog VLSI chip, NeuroDyn, features 384 digitally programmable parameters specifying for 4 generalized Hodgkin-Huxley neurons coupled through 12 conductance-based chemical synapses. The parameters also describe reversal potentials, maximal conductances, and spline regressed kinetic functions for ion channel gating variables. In one set of experiments, we assimilated membrane potential recorded from one of the neurons on the chip to the model structure upon which NeuroDyn was designed using the known current input sequence. We arrived at the programmed parameters except for model errors due to analog imperfections in the chip fabrication. In a related set of experiments, we replicated songbird individual neuron dynamics on NeuroDyn by estimating and configuring parameters extracted using data assimilation from intracellular neural recordings. Faithful emulation of detailed biophysical neural dynamics will enable the use of NeuroDyn as a tool to probe electrical and molecular properties of functional neural circuits. Neuroscience applications include studying the relationship between molecular properties of neurons and the emergence of different spike patterns or different brain behaviors. Clinical applications include studying and predicting effects of neuromodulators or neurodegenerative diseases on ion channel kinetics.
Collapse
|
8
|
Grassia F, Kohno T, Levi T. Digital hardware implementation of a stochastic two-dimensional neuron model. ACTA ACUST UNITED AC 2017; 110:409-416. [PMID: 28237321 DOI: 10.1016/j.jphysparis.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 11/15/2022]
Abstract
This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments.
Collapse
Affiliation(s)
- F Grassia
- LTI Lab., University of Picardie Jules Verne, France; IMS Lab., University of Bordeaux, France.
| | - T Kohno
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, Japan
| | - T Levi
- IMS Lab., University of Bordeaux, France; LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, Japan
| |
Collapse
|
9
|
Microfluidic Neurons, a New Way in Neuromorphic Engineering? MICROMACHINES 2016; 7:mi7080146. [PMID: 30404317 PMCID: PMC6189925 DOI: 10.3390/mi7080146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 01/15/2023]
Abstract
This article describes a new way to explore neuromorphic engineering, the biomimetic artificial neuron using microfluidic techniques. This new device could replace silicon neurons and solve the issues of biocompatibility and power consumption. The biological neuron transmits electrical signals based on ion flow through their plasma membrane. Action potentials are propagated along axons and represent the fundamental electrical signals by which information are transmitted from one place to another in the nervous system. Based on this physiological behavior, we propose a microfluidic structure composed of chambers representing the intra and extracellular environments, connected by channels actuated by Quake valves. These channels are equipped with selective ion permeable membranes to mimic the exchange of chemical species found in the biological neuron. A thick polydimethylsiloxane (PDMS) membrane is used to create the Quake valve membrane. Integrated electrodes are used to measure the potential difference between the intracellular and extracellular environments: the membrane potential.
Collapse
|
10
|
Kohno T, Sekikawa M, Li J, Nanami T, Aihara K. Qualitative-Modeling-Based Silicon Neurons and Their Networks. Front Neurosci 2016; 10:273. [PMID: 27378842 PMCID: PMC4908299 DOI: 10.3389/fnins.2016.00273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/31/2016] [Indexed: 11/13/2022] Open
Abstract
The ionic conductance models of neuronal cells can finely reproduce a wide variety of complex neuronal activities. However, the complexity of these models has prompted the development of qualitative neuron models. They are described by differential equations with a reduced number of variables and their low-dimensional polynomials, which retain the core mathematical structures. Such simple models form the foundation of a bottom-up approach in computational and theoretical neuroscience. We proposed a qualitative-modeling-based approach for designing silicon neuron circuits, in which the mathematical structures in the polynomial-based qualitative models are reproduced by differential equations with silicon-native expressions. This approach can realize low-power-consuming circuits that can be configured to realize various classes of neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for analog and digital implementations are quickly reviewed. One of our CMOS analog silicon neuron circuits can realize a variety of neuronal activities with a power consumption less than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron circuit can also realize these classes. An auto-associative memory realized on an all-to-all connected network of these silicon neurons is also reviewed, in which the neuron class plays important roles in its performance.
Collapse
Affiliation(s)
- Takashi Kohno
- Institute of Industrial Science, University of Tokyo Tokyo, Japan
| | - Munehisa Sekikawa
- Department of Mechanical and Intelligent Engineering, Utsunomiya University Utsunomiya, Japan
| | - Jing Li
- College of Electronic Engineering, Xi'an Shiyou University Xi'an, China
| | - Takuya Nanami
- Department of Electrical Engineering and Information Systems, University of Tokyo Tokyo, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, University of Tokyo Tokyo, Japan
| |
Collapse
|
11
|
Roy S, San PP, Hussain S, Wei LW, Basu A. Learning Spike Time Codes Through Morphological Learning With Binary Synapses. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:1572-1577. [PMID: 26173221 DOI: 10.1109/tnnls.2015.2447011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing.
Collapse
|
12
|
Osborn L, Kaliki R, Soares A, Thakor N. Neuromimetic Event-Based Detection for Closed-Loop Tactile Feedback Control of Upper Limb Prostheses. IEEE TRANSACTIONS ON HAPTICS 2016; 9:196-206. [PMID: 27777640 PMCID: PMC5074548 DOI: 10.1109/toh.2016.2564965] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Upper limb amputees lack the valuable tactile sensing that helps provide context about the surrounding environment. Here we utilize tactile information to provide active touch feedback to a prosthetic hand. First, we developed fingertip tactile sensors for producing biomimetic spiking responses for monitoring contact, release, and slip of an object grasped by a prosthetic hand. We convert the sensor output into pulses, mimicking the rapid and slowly adapting spiking responses of receptor afferents found in the human body. Second, we designed and implemented two neuromimetic event-based algorithms, Compliant Grasping and Slip Prevention, on a prosthesis to create a local closed-loop tactile feedback control system (i.e. tactile information is sent to the prosthesis). Grasping experiments were designed to assess the benefit of this biologically inspired neuromimetic tactile feedback to a prosthesis. Results from able-bodied and amputee subjects show the average number of objects that broke or slipped during grasping decreased by over 50% and the average time to complete a grasping task decreased by at least 10% for most trials when comparing neuromimetic tactile feedback with no feedback on a prosthesis. Our neuromimetic method of closed-loop tactile sensing is a novel approach to improving the function of upper limb prostheses.
Collapse
Affiliation(s)
- Luke Osborn
- PhD student in Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Rahul Kaliki
- Chief Executive Officer at Infinite Biomedical Technologies, Baltimore, MD 21218 USA
| | - Alcimar Soares
- Faculty in the Department of Electrical Engineering and director of the Biomedical Engineering Lab at Federal University of Uberlândia, Uberlândia, Brazil
| | - Nitish Thakor
- Faculty in the Department of Biomedical Engineering at Johns Hopkins University, Baltimore, MD 21218 USA. He is also director of the Singapore Institute for Neurotechnology (SINAPSE) at the National University of Singapore, Singapore 119077
| |
Collapse
|
13
|
Ambroise M, Levi T, Joucla S, Yvert B, Saïghi S. Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments. Front Neurosci 2013; 7:215. [PMID: 24319408 PMCID: PMC3836270 DOI: 10.3389/fnins.2013.00215] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/29/2013] [Indexed: 11/23/2022] Open
Abstract
This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin–Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development.
Collapse
Affiliation(s)
- Matthieu Ambroise
- Laboratoire IMS, UMR Centre National de la Recherche Scientifique, University of Bordeaux Talence, France
| | | | | | | | | |
Collapse
|
14
|
Pfeil T, Grübl A, Jeltsch S, Müller E, Müller P, Petrovici MA, Schmuker M, Brüderle D, Schemmel J, Meier K. Six networks on a universal neuromorphic computing substrate. Front Neurosci 2013; 7:11. [PMID: 23423583 PMCID: PMC3575075 DOI: 10.3389/fnins.2013.00011] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/18/2013] [Indexed: 11/28/2022] Open
Abstract
In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.
Collapse
Affiliation(s)
- Thomas Pfeil
- Kirchhoff-Institute for Physics, Universität Heidelberg Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|