1
|
Pulferer HS, Kostoglou K, Müller-Putz GR. Improving non-invasive trajectory decoding via neural correlates of continuous erroneous feedback processing. J Neural Eng 2024; 21:056010. [PMID: 39231465 DOI: 10.1088/1741-2552/ad7762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Objective. Over the last decades, error-related potentials (ErrPs) have repeatedly proven especially useful as corrective mechanisms in invasive and non-invasive brain-computer interfaces (BCIs). However, research in this context exclusively investigated the distinction of discrete events intocorrectorerroneousto the present day. Due to this predominant formulation as a binary classification problem, classical ErrP-based BCIs fail to monitor tasks demanding quantitative information on error severity rather than mere qualitative decisions on error occurrence. As a result, fine-tuned and natural feedback control based on continuously perceived deviations from an intended target remains beyond the capabilities of previously used BCI setups.Approach.To address this issue for future BCI designs, we investigated the feasibility of regressing rather than classifying error-related activity non-invasively from the brain.Main results.Using pre-recorded data from ten able-bodied participants in three sessions each and a multi-output convolutional neural network, we demonstrated the above-chance regression of ongoing target-feedback discrepancies from brain signals in a pseudo-online fashion. In a second step, we used this inferred information about the target deviation to correct the initially displayed feedback accordingly, reporting significant improvements in correlations between corrected feedback and target trajectories across feedback conditions.Significance.Our results indicate that continuous information on target-feedback discrepancies can be successfully regressed from cortical activity, paving the way to increasingly naturalistic, fine-tuned correction mechanisms for future BCI applications.
Collapse
Affiliation(s)
- Hannah S Pulferer
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
| | - Kyriaki Kostoglou
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
- BioTechMed-Graz, Graz, Styria, Austria
| |
Collapse
|
2
|
Noseda R, Villanueva L. Central generators of migraine and autonomic cephalalgias as targets for personalized pain management: Translational links. Eur J Pain 2023; 27:1126-1138. [PMID: 37421221 PMCID: PMC10979820 DOI: 10.1002/ejp.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Migraine oscillates between different states in association with internal homeostatic functions and biological rhythms that become more easily dysregulated in genetically susceptible individuals. Clinical and pre-clinical data on migraine pathophysiology support a primary role of the central nervous system (CNS) through 'dysexcitability' of certain brain networks, and a critical contribution of the peripheral sensory and autonomic signalling from the intracranial meningeal innervation. This review focuses on the most relevant back and forward translational studies devoted to the assessment of CNS dysfunctions involved in primary headaches and discusses the role they play in rendering the brain susceptible to headache states. METHODS AND RESULTS We collected a body of scientific literature from human and animal investigations that provide a compelling perspective on the anatomical and functional underpinnings of the CNS in migraine and trigeminal autonomic cephalalgias. We focus on medullary, hypothalamic and corticofugal modulation mechanisms that represent strategic neural substrates for elucidating the links between trigeminovascular maladaptive states, migraine triggering and the temporal phenotype of the disease. CONCLUSION It is argued that a better understanding of homeostatic dysfunctional states appears fundamental and may benefit the development of personalized therapeutic approaches for improving clinical outcomes in primary headache disorders. SIGNIFICANCE This review focuses on the most relevant back and forward translational studies showing the crucial role of top-down brain modulation in triggering and maintaining primary headache states and how these central dysfunctions may interact with personalized pain management strategies.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Luis Villanueva
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris-Cité, Team Imaging Biomarkers of Brain Disorders (IMA-Brain), INSERM U1266, Paris, France
| |
Collapse
|
3
|
Lages YV, Maisonnette SS, Rosseti FP, Galvão BO, Landeira-Fernandez J. Haloperidol and methylphenidate alter motor behavior and responses to conditioned fear of Carioca Low-conditioned Freezing rats. Pharmacol Biochem Behav 2021; 211:173296. [PMID: 34752797 DOI: 10.1016/j.pbb.2021.173296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
Animal models are important tools for studying neuropsychological disorders. Considering their limitations, a more extensive translational research must encompass data that are generated from several models. Therefore, a comprehensive characterization of these models is needed in terms of behavior and neurophysiology. The present study evaluated the behavioral responses of Carioca Low-conditioned Freezing (CLF) rats to haloperidol and methylphenidate. The CLF breeding line is characterized by low freezing defensive responses to contextual cues that are associated with aversive stimuli. CLF rats exhibited a delayed response to haloperidol at lower doses, needing higher doses to reach similar levels of catatonia as control randomly bred animals. Methylphenidate increased freezing responses to conditioned fear and induced motor effects in the open field. Thus, CLF rats differ from controls in their responses to both haloperidol and methylphenidate. Because of the dopamine-related molecular targets of these drugs, we hypothesize that dopaminergic alterations related to those of animal models of hyperactivity and attention disorders might underlie the observed phenotypes of the CLF line of rats.
Collapse
Affiliation(s)
- Yury V Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia P Rosseti
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno O Galvão
- Department of Psychology, Santa Úrsula University, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Dieckmann G, Ozmen MC, Cox SM, Engert RC, Hamrah P. Low-dose naltrexone is effective and well-tolerated for modulating symptoms in patients with neuropathic corneal pain. Ocul Surf 2021; 20:33-38. [PMID: 33450415 DOI: 10.1016/j.jtos.2020.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/02/2020] [Accepted: 12/26/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Neuropathic corneal pain (NCP) is caused by damage or disease of the somatosensory nervous system that innervates the cornea and presents with symptoms of pain or persistent unpleasant sensations, such as burning, dryness, or light sensitivity. This retrospective study aims to assess the efficacy and tolerability of low-dose naltrexone (LDN) in refractory NCP patients. METHODS Fifty-nine NCP patients with a centralized component treated with oral LDN 4.5 mg at bedtime for at least four weeks were identified. Thirty out of 59 patients who had a baseline pain score ≥4 on the visual analogue scale had completed the ocular pain assessment survey (OPAS) and presented persistent pain, despite instillation of topical anesthetic drops, were included. Changes in pain scores, comorbidities, side effects, among others, were analyzed. Change in ocular pain scores (scale 0-10) and quality of life (QoL) scores (scale 0-100%) were the main endpoints. RESULTS Mean age (years ± SD) was 45.60 ± 19.30 with a white (80.00%) female (73.33%) predominance. Duration of LDN use was 14.87 ± 11.25 months, and the duration of NCP before treatment was 17.53 ± 17.29 months. Eight patients used LDN as a monotherapy, whereas the remaining used it as an adjunct therapy. LDN resulted in a 49.22% decrease in mean pain score from 6.13 ± 1.93 to 3.23 ± 2.60 (p < 0.001). Mean QoL scores by the OPAS were 5.84 ± 2.57 at the first visit and improved to 3.77 ± 2.91 at the last visit (p = 0.023). Common side effects were vivid dreams, headaches, and stomachache. CONCLUSION LDN was effective and well-tolerated for NCP treatment.
Collapse
Affiliation(s)
- Gabriela Dieckmann
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical, USA
| | - M Cuneyt Ozmen
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical, USA
| | - Stephanie M Cox
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical, USA
| | - Ryan C Engert
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical, USA.
| |
Collapse
|
5
|
Du Y, Wang Y, Yu M, Tian X, Liu J. Resting-State Functional Connectivity of the Punishment Network Associated With Conformity. Front Behav Neurosci 2021; 14:617402. [PMID: 33390913 PMCID: PMC7772235 DOI: 10.3389/fnbeh.2020.617402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Fear of punishment prompts individuals to conform. However, why some people are more inclined than others to conform despite being unaware of any obvious punishment remains unclear, which means the dispositional determinants of individual differences in conformity propensity are poorly understood. Here, we explored whether such individual differences might be explained by individuals' stable neural markers to potential punishment. To do this, we first defined the punishment network (PN) by combining all potential brain regions involved in punishment processing. We subsequently used a voxel-based global brain connectivity (GBC) method based on resting-state functional connectivity (FC) to characterize the hubs in the PN, which reflected an ongoing readiness state (i.e., sensitivity) for potential punishment. Then, we used the within-network connectivity (WNC) of each voxel in the PN of 264 participants to explain their tendency to conform by using a conformity scale. We found that a stronger WNC in the right thalamus, left insula, postcentral gyrus, and dACC was associated with a stronger tendency to conform. Furthermore, the FC among the four hubs seemed to form a three-phase ascending pathway, contributing to conformity propensity at every phase. Thus, our results suggest that task-independent spontaneous connectivity in the PN could predispose individuals to conform.
Collapse
Affiliation(s)
- Yin Du
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yinan Wang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Mengxia Yu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xue Tian
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jia Liu
- Department of Psychology, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Dopaminergic influences on risk preferences of Parkinson's disease patients. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:88-97. [PMID: 30306414 DOI: 10.3758/s13415-018-00646-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinicians are increasingly recognizing impulse control disorders (ICDs) as a complication of dopaminergic treatment in Parkinson's disease (PD). Considering the pivotal role of dopamine in reward information processing, ICDs may originate from dysregulation of reward-oriented behavior, and the behavioral changes may be reflected in shifts of psychological risk preference during decision-making. We used a behavioral economics paradigm to evaluate quantitatively the risk preferences of PD patients in levodopa on and off states. We also examined age-matched healthy controls. We found that levodopa increased the subjective value and prolonged the decision time in PD patients. These effects are apparently not explained by kinematic improvements but are attributed to psychological shifts of risk preferences and increased attention during risky decision-making. The risk preferences of healthy controls were similar to those of PD on levodopa treatment. The risk preferences of PD patients were not correlated with the scores of routine cognitive batteries, suggesting that dopamine-sensitive risk preferences are independent of cognitive capacities as measured by conventional batteries, including general intelligence, memory, and frontal functioning. By contrast, apathy and ICD partially predicted the risk attitude in PD patients, suggesting a common background of limbic origin behind these properties. The present results demonstrated that dopamine deficiency in off-state PD leads to risk-avoiding behavior and levodopa treatment increases the risk preferences. Behavioral economics framework is useful to evaluate short-term psychological changes in response to levodopa in PD patients.
Collapse
|
7
|
Jean-Richard-Dit-Bressel P, Killcross S, McNally GP. Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders. Neuropsychopharmacology 2018; 43:1639-1650. [PMID: 29703994 PMCID: PMC6006171 DOI: 10.1038/s41386-018-0047-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 02/08/2023]
Abstract
Punishment involves learning about the relationship between behavior and its adverse consequences. Punishment is fundamental to reinforcement learning, decision-making and choice, and is disrupted in psychiatric disorders such as addiction, depression, and psychopathy. However, little is known about the brain mechanisms of punishment and much of what is known is derived from study of superficially similar, but fundamentally distinct, forms of aversive learning such as fear conditioning and avoidance learning. Here we outline the unique conditions that support punishment, the contents of its learning, and its behavioral consequences. We consider evidence implicating GABA and monoamine neurotransmitter systems, as well as corticostriatal, amygdala, and dopamine circuits in punishment. We show how maladaptive punishment processes are implicated in addictions, impulse control disorders, psychopathy, anxiety, and depression and argue that a better understanding of the cellular, circuit, and cognitive mechanisms of punishment will make important contributions to next generation therapeutic approaches.
Collapse
|
8
|
Cannella N, Cosa-Linan A, Büchler E, Falfan-Melgoza C, Weber-Fahr W, Spanagel R. In vivo structural imaging in rats reveals neuroanatomical correlates of behavioral sub-dimensions of cocaine addiction. Addict Biol 2018; 23:182-195. [PMID: 28231635 DOI: 10.1111/adb.12500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/31/2022]
Abstract
Cocaine addiction is a multi-dimensional behavioral disorder characterized by a loss of control over cocaine taking despite of detrimental consequences. Structural MRI studies have revealed association between cocaine consumption and gray matter volume (GMV) in cocaine-addicted patients. However, the behavioral correlates of GMV in cocaine addiction are poorly understood. Here, we used a DSM-IV-based rat model of cocaine addiction with high face validity for structural imaging. According to three behavioral sub-dimensions of addiction, rats were separated into two groups showing either addict-like or non-addict-like behavior. These behavioral sub-dimensions were (1) the inability to refrain from drug-seeking and taking, (2) high motivation for the drug, and (3) maintained drug use despite negative consequences. In these rats, we performed structural MRI with voxel-based morphometry and analyzed the interaction of GMV with behavioral sub-dimensions in cocaine-addicted rats. Our major findings are that GMV differentially correlate with the inability to refrain from drug-seeking and taking in addict-like and non-addict-like rats within the somatosensory cortices and the amygdala. High motivation for the drug differentially correlates with GMV in addict-like and non-addict-like rats within the medial prefrontal cortex, and maintained drug use despite negative consequences differentially correlates with GMV in these two groups of rats within the periaqueductal gray. Our results demonstrate that the behavioral differences characterizing addict-like and non-addict-like rats in each behavioral sub-dimension of addiction are reflected by divergent covariance with GMV. We conclude that structural imaging provides specific neuroanatomical correlates of behavioral sub-dimensions of addiction.
Collapse
Affiliation(s)
- Nazzareno Cannella
- Institute of Psychopharmacology, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Alejandro Cosa-Linan
- Institute of Psychopharmacology, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Elena Büchler
- Institute of Psychopharmacology, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Claudia Falfan-Melgoza
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| |
Collapse
|
9
|
Yan Z, Pei M, Su Y. Children's Empathy and Their Perception and Evaluation of Facial Pain Expression: An Eye Tracking Study. Front Psychol 2017; 8:2284. [PMID: 29312106 PMCID: PMC5744656 DOI: 10.3389/fpsyg.2017.02284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022] Open
Abstract
The function of empathic concern to process pain is a product of evolutionary adaptation. Focusing on 5- to 6-year old children, the current study employed eye-tracking in an odd-one-out task (searching for the emotional facial expression among neutral expressions, N = 47) and a pain evaluation task (evaluating the pain intensity of a facial expression, N = 42) to investigate the relationship between children’s empathy and their behavioral and perceptual response to facial pain expression. We found children detected painful expression faster than others (angry, sad, and happy), children high in empathy performed better on searching facial expression of pain, and gave higher evaluation of pain intensity; and rating for pain in painful expressions was best predicted by a self-reported empathy score. As for eye-tracking in pain detection, children fixated on pain more quickly, less frequently and for shorter times. Of facial clues, children fixated on eyes and mouth more quickly, more frequently and for longer times. These results implied that painful facial expression was different from others in a cognitive sense, and children’s empathy might facilitate their search and make them perceive the intensity of observed pain on the higher side.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Meng Pei
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yanjie Su
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Peng K, Steele SC, Becerra L, Borsook D. Brodmann area 10: Collating, integrating and high level processing of nociception and pain. Prog Neurobiol 2017; 161:1-22. [PMID: 29199137 DOI: 10.1016/j.pneurobio.2017.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
Multiple frontal cortical brain regions have emerged as being important in pain processing, whether it be integrative, sensory, cognitive, or emotional. One such region, Brodmann Area 10 (BA 10), is the largest frontal brain region that has been shown to be involved in a wide variety of functions including risk and decision making, odor evaluation, reward and conflict, pain, and working memory. BA 10, also known as the anterior prefrontal cortex, frontopolar prefrontal cortex or rostral prefrontal cortex, is comprised of at least two cytoarchitectonic sub-regions, medial and lateral. To date, the explicit role of BA 10 in the processing of pain hasn't been fully elucidated. In this paper, we first review the anatomical pathways and functional connectivity of BA 10. Numerous functional imaging studies of experimental or clinical pain have also reported brain activations and/or deactivations in BA 10 in response to painful events. The evidence suggests that BA 10 may play a critical role in the collation, integration and high-level processing of nociception and pain, but also reveals possible functional distinctions between the subregions of BA 10 in this process.
Collapse
Affiliation(s)
- Ke Peng
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States.
| | - Sarah C Steele
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| |
Collapse
|
11
|
The Transition of Acute Postoperative Pain to Chronic Pain: An Integrative Overview of Research on Mechanisms. THE JOURNAL OF PAIN 2017; 18:359.e1-359.e38. [DOI: 10.1016/j.jpain.2016.11.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/15/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
|
12
|
Hamrah P, Qazi Y, Shahatit B, Dastjerdi MH, Pavan-Langston D, Jacobs DS, Rosenthal P. Corneal Nerve and Epithelial Cell Alterations in Corneal Allodynia: An In Vivo Confocal Microscopy Case Series. Ocul Surf 2016; 15:139-151. [PMID: 27816571 DOI: 10.1016/j.jtos.2016.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate morphological changes of the corneal epithelium and subbasal nerves in patients with corneal allodynia using in vivo confocal microscopy (IVCM). DESIGN Case-control study of patients with corneal allodynia and healthy controls. METHODS Ten eyes of six patients were diagnosed with corneal allodynia at a single center and compared to fifteen healthy eyes. IVCM of the central cornea was performed on all subjects and controls. Images were retrospectively analyzed numbers of total corneal subbasal nerves, main trunks and branches, total nerve length and density, nerve branching, and tortuosity, superficial and basal epithelial cell densities, and superficial epithelial cell size. RESULTS Corneal allodynia was seen in patients with dry eye disease, recurrent corneal erosion syndrome, exposure to ultraviolet radiation, and Accutane use. Compared to controls, patients with corneal allodynia had a significant decrease in the total numbers of subbasal nerves (P=.014), nerve branches (P=.006), total nerve length (P=.0029), total nerve density (P=.0029) and superficial and basal epithelial cell densities (P=.0004, P=.0036) with an increase in superficial epithelial cell size (P=.016). There were no statistically significant differences in the number of subbasal nerve main trunks (P=.09), nerve branching (P=.21), and nerve tortuosity (P=.05). CONCLUSIONS Corneal IVCM enables near-histological visualization and quantification of the cellular and neural changes in corneal allodynia. Regardless of etiology, corneal allodynia is associated with decreased corneal epithelial cell densities, increased epithelial cell size, and decreased numbers and lengths of subbasal nerves despite an unremarkable slit-lamp examination. Therefore, IVCM may be useful in the management of patients with corneal allodynia.
Collapse
Affiliation(s)
- Pedram Hamrah
- Boston Image Reading Center, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Ocular Surface Imaging Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Cornea & Refractive Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| | - Yureeda Qazi
- Ocular Surface Imaging Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Bashar Shahatit
- Ocular Surface Imaging Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mohammad H Dastjerdi
- Ocular Surface Imaging Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Cornea & Refractive Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Deborah Pavan-Langston
- Cornea & Refractive Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Deborah S Jacobs
- Cornea & Refractive Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Boston Foundation for Sight, Needham, MA, USA
| | | |
Collapse
|
13
|
The role of histamine H1, H2 and H3 receptors of ventral posteromedial nucleus of thalamus in modulation of trigeminal pain. Eur J Pharmacol 2016; 791:696-702. [DOI: 10.1016/j.ejphar.2016.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/02/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022]
|
14
|
Abstract
Eye pain is an unpleasant sensory and emotional experience including sensory-discriminative, emotional, cognitive, and behavioral components and supported by distinct, interconnected peripheral and central nervous system elements. Normal or physiological pain results of the stimulation by noxious stimuli of sensory axons of trigeminal ganglion (TG) neurons innervating the eye. These are functionally heterogeneous. Mechano-nociceptors are only excited by noxious mechanical forces. Polymodal nociceptors also respond to heat, exogenous irritants, and endogenous inflammatory mediators, whereas cold thermoreceptors detect moderate temperature changes. Their distinct sensitivity to stimulating forces is determined by the expression of specific classes of ion channels: Piezo2 for mechanical forces, TRPV1 and TRPA1 for heat and chemical agents, and TRPM8 for cold. Pricking pain is evoked by mechano-nociceptors, while polymodal nociceptors are responsible of burning and stinging eye pain; sensations of dryness appear to be mainly evoked by cold thermoreceptors. Mediators released by local inflammation, increase the excitability of eye polymodal nociceptors causing their sensitization and the augmented pain sensations. During chronic inflammation, additional, long-lasting changes in the expression and function of stimulus-transducing and voltage-sensitive ion channels develop, thereby altering polymodal terminal's excitability and evoking chronic inflammatory pain. When trauma, infections, or metabolic processes directly damage eye nerve terminals, these display aberrant impulse firing due to an abnormal expression of transducing and excitability-modulating ion channels. This malfunction evokes 'neuropathic pain' which may also result from abnormal function of higher brain structures where ocular TG neurons project. Eye diseases or ocular surface surgery cause different levels of inflammation and/or nerve injury, which in turn activate sensory fibers of the eye in a variable degree. When inflammation dominates (allergic or actinic kerato-conjunctivitis), polymodal nociceptors are primarily stimulated and sensitized, causing pain. In uncomplicated photorefractive surgery and moderate dry eye, cold thermoreceptors appear to be mainly affected, evoking predominant sensations of unpleasant dryness.
Collapse
Affiliation(s)
- Carlos Belmonte
- />Instituto de Neurociencias, Universidad Miguel Hernández-CSIC San Juan de Alicante, Avenida de la Universidad, s/n, 03202 Alicante, Spain
- />Instituto Fernandez Vega, Fundación de Investigación Oftalmológica, Av Doctores Fernández Vega, 34, 33012 Oviedo, Asturias Spain
| | - M. Carmen Acosta
- />Instituto de Neurociencias, Universidad Miguel Hernández-CSIC San Juan de Alicante, Avenida de la Universidad, s/n, 03202 Alicante, Spain
| | - Jesus Merayo-Lloves
- />Instituto Fernandez Vega, Fundación de Investigación Oftalmológica, Av Doctores Fernández Vega, 34, 33012 Oviedo, Asturias Spain
| | - Juana Gallar
- />Instituto de Neurociencias, Universidad Miguel Hernández-CSIC San Juan de Alicante, Avenida de la Universidad, s/n, 03202 Alicante, Spain
| |
Collapse
|
15
|
Monaco A, Cattaneo R, Mesin L, Ortu E, Giannoni M, Pietropaoli D. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: a pupillometric study. PLoS One 2015; 10:e0122826. [PMID: 25905862 PMCID: PMC4408101 DOI: 10.1371/journal.pone.0122826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/15/2015] [Indexed: 11/18/2022] Open
Abstract
Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the descending pain system may be involved in TMD.
Collapse
Affiliation(s)
- Annalisa Monaco
- University of L’Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 Dental Unit, St Salvatore Hospital—Via Vetoio 67100 L’Aquila, Italy
| | - Ruggero Cattaneo
- University of L’Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 Dental Unit, St Salvatore Hospital—Via Vetoio 67100 L’Aquila, Italy
| | - Luca Mesin
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Eleonora Ortu
- University of L’Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 Dental Unit, St Salvatore Hospital—Via Vetoio 67100 L’Aquila, Italy
| | - Mario Giannoni
- University of L’Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 Dental Unit, St Salvatore Hospital—Via Vetoio 67100 L’Aquila, Italy
| | - Davide Pietropaoli
- University of L’Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6 Dental Unit, St Salvatore Hospital—Via Vetoio 67100 L’Aquila, Italy
- * E-mail:
| |
Collapse
|
16
|
Sueki DG, Dunleavy K, Puentedura EJ, Spielholz NI, Cheng MS. The role of associative learning and fear in the development of chronic pain – a comparison of chronic pain and post-traumatic stress disorder. PHYSICAL THERAPY REVIEWS 2014. [DOI: 10.1179/1743288x14y.0000000154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Abstract
Prediction error signals are fundamental to learning. Here, in mice, we show that aversive prediction signals are found in the hemodynamic responses and theta oscillations recorded from the basolateral amygdala. During fear conditioning, amygdala responses evoked by footshock progressively decreased, whereas responses evoked by the auditory cue that predicted footshock concomitantly increased. Unexpected footshock evoked larger amygdala responses than expected footshock. The magnitude of the amygdala response to the footshock predicted behavioral responses the following day. The omission of expected footshock led to a decrease below baseline in the amygdala response suggesting a negative aversive prediction error signal. Thus, in mice, amygdala activity conforms to temporal difference models of aversive learning.
Collapse
|
18
|
Dreher JC, Seymour B, Tobler PN. Punishment-based decision making. Front Neurosci 2013; 7:236. [PMID: 24368894 PMCID: PMC3857911 DOI: 10.3389/fnins.2013.00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 11/22/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jean-Claude Dreher
- Reward and Decision Making Group, Centre de Neurosciences Cognitives, Centre National de la Recherche Scientifique Lyon, France
| | - Ben Seymour
- Center for Information and Neural Networks, National Institute for Information and Communications Technology Osaka, Japan
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich Zurich, Switzerland
| |
Collapse
|
19
|
Lowén MB, Mayer EA, Sjöberg M, Tillisch K, Naliboff B, Labus J, Lundberg P, Ström M, Engström M, Walter SA. Effect of hypnotherapy and educational intervention on brain response to visceral stimulus in the irritable bowel syndrome. Aliment Pharmacol Ther 2013; 37:1184-97. [PMID: 23617618 PMCID: PMC4084976 DOI: 10.1111/apt.12319] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/10/2013] [Accepted: 04/01/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Gut-directed hypnotherapy can reduce IBS symptoms, but the mechanisms underlying this therapeutic effect remain unknown. AIM To determine the effect of hypnotherapy and educational intervention on brain responses to cued rectal distensions in IBS patients. METHODS Forty-four women with moderate-to-severe IBS and 20 healthy controls (HCs) were included. Blood oxygen level dependent (BOLD) signals were measured by functional Magnetic Resonance Imaging (fMRI) during expectation and delivery of high- (45 mmHg) and low-intensity (15 mmHg) rectal distensions. Twenty-five patients were assigned to hypnotherapy (HYP) and 16 to educational intervention (EDU). Thirty-one patients completed treatments and posttreatment fMRI. RESULTS Similar symptom reduction was achieved in both groups. Clinically successful treatment (all responders) was associated with significant BOLD attenuation during high-intensity distension in the dorsal and ventral anterior insula (cluster size 142, P = 0.006, and cluster size 101, P = 0.005 respectively). Moreover HYP responders demonstrated a pre-post treatment BOLD attenuation in posterior insula (cluster sizes 59, P = 0.05) while EDU responders had a BOLD attenuation in prefrontal cortex (cluster size 60, P = 0.05). Pre-post differences for expectation conditions were almost exclusively seen in the HYP group. Following treatment, the brain response to distension was similar to that observed in HCs, suggesting that the treatment had a normalising effect on the central processing abnormality of visceral signals in IBS. CONCLUSIONS The abnormal processing and enhanced perception of visceral stimuli in IBS can be normalised by psychological interventions. Symptom improvement in the treatment groups may be mediated by different brain mechanisms. CLINICAL TRIAL NUMBER NCT01815164.
Collapse
Affiliation(s)
- Mats B.O. Lowén
- Department of Clinical and Experimental Medicine/Gastroenterology, Center for Medical Image Science and Visualization (CMIV), Linköping University Department of Gastroenterology, UHL, County Council of Östergötland, Linköping, Sweden
| | - Emeran A. Mayer
- The Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | | | - Kirsten Tillisch
- The Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Bruce Naliboff
- The Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jennifer Labus
- The Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Peter Lundberg
- Center for Medical Image Science and Visualization, CMIV; Radiation Physics, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University; Department of Radiation Physics UHL, County Council of Östergötland, Linköping, Sweden Center for Medical Image Science and Visualization, CMIV; Radiology, Department of Medical and Health Sciences, Faculty of Health Sciences Linköping University; Department of Radiology UHL, County Council of Östergötland, Linköping, Sweden
| | - Magnus Ström
- Department of Clinical and Experimental Medicine/Gastroenterology, Linköping University, Department of Gastroenterology, UHL, County Council of Östergötland, Linköping, Sweden
| | - Maria Engström
- Department of Medical and Health Sciences (IMH)/Radiology, Linköping University, Sweden, Center for Medical Image Science and Visualization (CMIV) Linköping University, Sweden
| | - Susanna A. Walter
- Department of Clinical and Experimental Medicine/Gastroenterology, Center for Medical Image Science and Visualization (CMIV), Linköping University Department of Gastroenterology, UHL, County Council of Östergötland, Linköping, Sweden
| |
Collapse
|
20
|
Rolls ET. A biased activation theory of the cognitive and attentional modulation of emotion. Front Hum Neurosci 2013; 7:74. [PMID: 23508210 PMCID: PMC3600537 DOI: 10.3389/fnhum.2013.00074] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/25/2013] [Indexed: 11/13/2022] Open
Abstract
Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex (OFC). The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex (ACC). Similar effects are found for selective attention, to for example the pleasantness vs. the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype.
Collapse
|