1
|
Ralph N, Joubert D, Jolley A, Afshar S, Tothill N, van Schaik A, Cohen G. Real-Time Event-Based Unsupervised Feature Consolidation and Tracking for Space Situational Awareness. Front Neurosci 2022; 16:821157. [PMID: 35600627 PMCID: PMC9120364 DOI: 10.3389/fnins.2022.821157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Earth orbit is a limited natural resource that hosts a vast range of vital space-based systems that support the international community's national, commercial and defence interests. This resource is rapidly becoming depleted with over-crowding in high demand orbital slots and a growing presence of space debris. We propose the Fast Iterative Extraction of Salient targets for Tracking Asynchronously (FIESTA) algorithm as a robust, real-time and reactive approach to optical Space Situational Awareness (SSA) using Event-Based Cameras (EBCs) to detect, localize, and track Resident Space Objects (RSOs) accurately and timely. We address the challenges of the asynchronous nature and high temporal resolution output of the EBC accurately, unsupervised and with few tune-able parameters using concepts established in the neuromorphic and conventional tracking literature. We show this algorithm is capable of highly accurate in-frame RSO velocity estimation and average sub-pixel localization in a simulated test environment to distinguish the capabilities of the EBC and optical setup from the proposed tracking system. This work is a fundamental step toward accurate end-to-end real-time optical event-based SSA, and developing the foundation for robust closed-form tracking evaluated using standardized tracking metrics.
Collapse
Affiliation(s)
- Nicholas Ralph
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
- *Correspondence: Nicholas Ralph
| | - Damien Joubert
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Andrew Jolley
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
- Air and Space Power Development Centre, Royal Australian Air Force, Canberra, ACT, Australia
| | - Saeed Afshar
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Nicholas Tothill
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - André van Schaik
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Gregory Cohen
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| |
Collapse
|
2
|
Haessig G, Milde MB, Aceituno PV, Oubari O, Knight JC, van Schaik A, Benosman RB, Indiveri G. Event-Based Computation for Touch Localization Based on Precise Spike Timing. Front Neurosci 2020; 14:420. [PMID: 32528239 PMCID: PMC7248403 DOI: 10.3389/fnins.2020.00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Precise spike timing and temporal coding are used extensively within the nervous system of insects and in the sensory periphery of higher order animals. However, conventional Artificial Neural Networks (ANNs) and machine learning algorithms cannot take advantage of this coding strategy, due to their rate-based representation of signals. Even in the case of artificial Spiking Neural Networks (SNNs), identifying applications where temporal coding outperforms the rate coding strategies of ANNs is still an open challenge. Neuromorphic sensory-processing systems provide an ideal context for exploring the potential advantages of temporal coding, as they are able to efficiently extract the information required to cluster or classify spatio-temporal activity patterns from relative spike timing. Here we propose a neuromorphic model inspired by the sand scorpion to explore the benefits of temporal coding, and validate it in an event-based sensory-processing task. The task consists in localizing a target using only the relative spike timing of eight spatially-separated vibration sensors. We propose two different approaches in which the SNNs learns to cluster spatio-temporal patterns in an unsupervised manner and we demonstrate how the task can be solved both analytically and through numerical simulation of multiple SNN models. We argue that the models presented are optimal for spatio-temporal pattern classification using precise spike timing in a task that could be used as a standard benchmark for evaluating event-based sensory processing models based on temporal coding.
Collapse
Affiliation(s)
- Germain Haessig
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Moritz B Milde
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Pau Vilimelis Aceituno
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Max Planck School of Cognition, Leipzig, Germany
| | - Omar Oubari
- Institut de la Vision, Sorbonne Université, Paris, France
| | - James C Knight
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Ryad B Benosman
- Institut de la Vision, Sorbonne Université, Paris, France.,University of Pittsburgh, Pittsburgh, PA, United States.,Carnegie Mellon University, Pittsburgh, PA, United States
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Afshar S, Ralph N, Xu Y, Tapson J, van Schaik A, Cohen G. Event-Based Feature Extraction Using Adaptive Selection Thresholds. SENSORS 2020; 20:s20061600. [PMID: 32183052 PMCID: PMC7146588 DOI: 10.3390/s20061600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 11/25/2022]
Abstract
Unsupervised feature extraction algorithms form one of the most important building blocks in machine learning systems. These algorithms are often adapted to the event-based domain to perform online learning in neuromorphic hardware. However, not designed for the purpose, such algorithms typically require significant simplification during implementation to meet hardware constraints, creating trade offs with performance. Furthermore, conventional feature extraction algorithms are not designed to generate useful intermediary signals which are valuable only in the context of neuromorphic hardware limitations. In this work a novel event-based feature extraction method is proposed that focuses on these issues. The algorithm operates via simple adaptive selection thresholds which allow a simpler implementation of network homeostasis than previous works by trading off a small amount of information loss in the form of missed events that fall outside the selection thresholds. The behavior of the selection thresholds and the output of the network as a whole are shown to provide uniquely useful signals indicating network weight convergence without the need to access network weights. A novel heuristic method for network size selection is proposed which makes use of noise events and their feature representations. The use of selection thresholds is shown to produce network activation patterns that predict classification accuracy allowing rapid evaluation and optimization of system parameters without the need to run back-end classifiers. The feature extraction method is tested on both the N-MNIST (Neuromorphic-MNIST) benchmarking dataset and a dataset of airplanes passing through the field of view. Multiple configurations with different classifiers are tested with the results quantifying the resultant performance gains at each processing stage.
Collapse
|
4
|
Afshar S, Hamilton TJ, Tapson J, van Schaik A, Cohen G. Investigation of Event-Based Surfaces for High-Speed Detection, Unsupervised Feature Extraction, and Object Recognition. Front Neurosci 2019; 12:1047. [PMID: 30705618 PMCID: PMC6344467 DOI: 10.3389/fnins.2018.01047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022] Open
Abstract
In this work, we investigate event-based feature extraction through a rigorous framework of testing. We test a hardware efficient variant of Spike Timing Dependent Plasticity (STDP) on a range of spatio-temporal kernels with different surface decaying methods, decay functions, receptive field sizes, feature numbers, and back end classifiers. This detailed investigation can provide helpful insights and rules of thumb for performance vs. complexity trade-offs in more generalized networks, especially in the context of hardware implementation, where design choices can incur significant resource costs. The investigation is performed using a new dataset consisting of model airplanes being dropped free-hand close to the sensor. The target objects exhibit a wide range of relative orientations and velocities. This range of target velocities, analyzed in multiple configurations, allows a rigorous comparison of time-based decaying surfaces (time surfaces) vs. event index-based decaying surface (index surfaces), which are used to perform unsupervised feature extraction, followed by target detection and recognition. We examine each processing stage by comparison to the use of raw events, as well as a range of alternative layer structures, and the use of random features. By comparing results from a linear classifier and an ELM classifier, we evaluate how each element of the system affects accuracy. To generate time and index surfaces, the most commonly used kernels, namely event binning kernels, linearly, and exponentially decaying kernels, are investigated. Index surfaces were found to outperform time surfaces in recognition when invariance to target velocity was made a requirement. In the investigation of network structure, larger networks of neurons with large receptive field sizes were found to perform best. We find that a small number of event-based feature extractors can project the complex spatio-temporal event patterns of the dataset to an almost linearly separable representation in feature space, with best performing linear classifier achieving 98.75% recognition accuracy, using only 25 feature extracting neurons.
Collapse
Affiliation(s)
- Saeed Afshar
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - Tara Julia Hamilton
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - Jonathan Tapson
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - André van Schaik
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - Gregory Cohen
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Lee WW, Kukreja SL, Thakor NV. CONE: Convex-Optimized-Synaptic Efficacies for Temporally Precise Spike Mapping. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:849-861. [PMID: 27046881 DOI: 10.1109/tnnls.2015.2509479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spiking neural networks are well suited to perform time-dependent pattern recognition problems by encoding the temporal dimension in precise spike times. With an appropriate set of weights, a spiking neuron can emit precisely timed action potentials in response to spatiotemporal input spikes. However, deriving supervised learning rules for spike mapping is nontrivial due to the increased complexity. Existing methods rely on heuristic approaches that do not guarantee a convex objective function and, therefore, may not converge to a global minimum. In this paper, we present a novel technique to obtain the weights of spiking neurons by formulating the problem in a convex optimization framework, rendering it be compatible with the established methods. We introduce techniques to influence the weight distribution and membrane trajectory, and then study how these factors affect robustness in the presence of noise. In addition, we show how the existence of a solution can be determined and assess memory capacity limits of a neuron model using synthetic examples. The practical utility of our technique is further assessed by its application to gait-event detection using the experimental data.
Collapse
|
6
|
Afshar S, George L, Thakur CS, Tapson J, van Schaik A, de Chazal P, Hamilton TJ. Turn Down That Noise: Synaptic Encoding of Afferent SNR in a Single Spiking Neuron. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:188-196. [PMID: 25910252 DOI: 10.1109/tbcas.2015.2416391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have added a simplified neuromorphic model of Spike Time Dependent Plasticity (STDP) to the previously described Synapto-dendritic Kernel Adapting Neuron (SKAN), a hardware efficient neuron model capable of learning spatio-temporal spike patterns. The resulting neuron model is the first to perform synaptic encoding of afferent signal-to-noise ratio in addition to the unsupervised learning of spatio-temporal spike patterns. The neuron model is particularly suitable for implementation in digital neuromorphic hardware as it does not use any complex mathematical operations and uses a novel shift-based normalization approach to achieve synaptic homeostasis. The neuron's noise compensation properties are characterized and tested on random spatio-temporal spike patterns as well as a noise corrupted subset of the zero images of the MNIST handwritten digit dataset. Results show the simultaneously learning common patterns in its input data while dynamically weighing individual afferents based on their signal to noise ratio. Despite its simplicity the interesting behaviors of the neuron model and the resulting computational power may also offer insights into biological systems.
Collapse
|