1
|
Jia H, Huang Z, Kaynak M, Sakar MS. Colloidal self-assembly of soft neural interfaces from injectable photovoltaic microdevices. RSC Adv 2023; 13:19888-19897. [PMID: 37404318 PMCID: PMC10316755 DOI: 10.1039/d3ra03591c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Biomimetic retinas with a wide field of view and high resolution are in demand for neuroprosthetics and robot vision. Conventional neural prostheses are manufactured outside the application area and implanted as a complete device using invasive surgery. Here, a minimally invasive strategy based on in situ self-assembly of photovoltaic microdevices (PVMs) is presented. The photoelectricity transduced by PVMs upon visible light illumination reaches the intensity levels that could effectively activate the retinal ganglion cell layers. The geometry and multilayered architecture of the PVMs along with the tunability of their physical properties such as size and stiffness allow several routes for initiating a self-assembly process. The spatial distribution and packing density of the PVMs within the assembled device are modulated through concentration, liquid discharge speed, and coordinated self-assembly steps. Subsequent injection of a photocurable and transparent polymer facilitates tissue integration and reinforces the cohesion of the device. Taken together, the presented methodology introduces three unique features: minimally invasive implantation, personalized visual field and acuity, and a device geometry adaptable to retina topography.
Collapse
Affiliation(s)
- Haiyan Jia
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Zhangjun Huang
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Murat Kaynak
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| |
Collapse
|
2
|
Carstens N, Adejube B, Strunskus T, Faupel F, Brown S, Vahl A. Brain-like critical dynamics and long-range temporal correlations in percolating networks of silver nanoparticles and functionality preservation after integration of insulating matrix. NANOSCALE ADVANCES 2022; 4:3149-3160. [PMID: 36132822 PMCID: PMC9418118 DOI: 10.1039/d2na00121g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/07/2022] [Indexed: 06/16/2023]
Abstract
Random networks of nanoparticle-based memristive switches enable pathways for emulating highly complex and self-organized synaptic connectivity together with their emergent functional behavior known from biological neuronal networks. They therefore embody a distinct class of neuromorphic hardware architectures and provide an alternative to highly regular arrays of memristors. Especially, networks of memristive nanoparticles (NPs) poised at the percolation threshold are promising due to their capabilities of showing brain-like activity such as critical dynamics or long-range temporal correlation (LRTC), which are closely connected to the computational capabilities in biological neuronal networks. Here, we adapt this concept to networks of Ag-NPs poised at the electrical percolation threshold, where the memristive properties are governed by electro-chemical metallization. We show that critical dynamics and LRTC are preserved although the nature of individual memristive gaps throughout the network is fundamentally changed by filling the gaps with an insulating matrix. The results in this work generate important contributions towards the practical applicability of critical dynamics and LRTC in percolating NP networks by elucidating the consequences of NP network encapsulation, which is considered as an important step towards device integration.
Collapse
Affiliation(s)
- Niko Carstens
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| | - Blessing Adejube
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| | - Thomas Strunskus
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| | - Franz Faupel
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| | - Simon Brown
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, Te Kura Matū, University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Alexander Vahl
- Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University Kaiserstraße 2 D-24143 Kiel Germany
| |
Collapse
|
3
|
Abstract
The arts are making their mark in science, technology, engineering, arts, and mathematics/medicine (STEAM). Integrating creative expression-poetry and other visual and performing arts-can help clinicians, scientists, and others use familiar social constructs to embody science and medicine, in what may be termed poetic science. Poetic science imbues bidirectional reflections of science and medicine on the clinician or scientist or other inquisitor, creatively engaging the learner's brain cells as mirrors. This ultimately leads to a subjective perspective on the understanding or the proposition of underlying principles. Such an approach is encouraged here with poignant examples that can be accessed publicly online and used widely by readers, teachers, learners, clinicians, scientists, students, and others.
Collapse
Affiliation(s)
- Sherry-Ann Brown
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Ehling P, Meuth P, Eichinger P, Herrmann AM, Bittner S, Pawlowski M, Pankratz S, Herty M, Budde T, Meuth SG. Human T cells in silico: Modelling their electrophysiological behaviour in health and disease. J Theor Biol 2016; 404:236-250. [PMID: 27288542 DOI: 10.1016/j.jtbi.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 01/27/2023]
Abstract
Although various types of ion channels are known to have an impact on human T cell effector functions, their exact mechanisms of influence are still poorly understood. The patch clamp technique is a well-established method for the investigation of ion channels in neurons and T cells. However, small cell sizes and limited selectivity of pharmacological blockers restrict the value of this experimental approach. Building a realistic T cell computer model therefore can help to overcome these kinds of limitations as well as reduce the overall experimental effort. The computer model introduced here was fed off ion channel parameters from literature and new experimental data. It is capable of simulating the electrophysiological behaviour of resting and activated human CD4(+) T cells under basal conditions and during extracellular acidification. The latter allows for the very first time to assess the electrophysiological consequences of tissue acidosis accompanying most forms of inflammation.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany.
| | - Patrick Meuth
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Paul Eichinger
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany; Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Alexander M Herrmann
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Matthias Pawlowski
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany; Wellcome Trust and MRC Cambridge Stem Cell Institute, and Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge, UK
| | - Susann Pankratz
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Michael Herty
- RWTH Aachen University, Mathematics (Continuous optimization), Templergraben 55, 52056 Aachen, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany
| | - Sven G Meuth
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| |
Collapse
|
7
|
Jiang J, Azim E, Ekerot CF, Alstermark B. Direct and indirect spino-cerebellar pathways: shared ideas but different functions in motor control. Front Comput Neurosci 2015. [PMID: 26217214 PMCID: PMC4491712 DOI: 10.3389/fncom.2015.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The impressive precision of mammalian limb movements relies on internal feedback pathways that convey information about ongoing motor output to cerebellar circuits. The spino-cerebellar tracts (SCT) in the cervical, thoracic and lumbar spinal cord have long been considered canonical neural substrates for the conveyance of internal feedback signals. Here we consider the distinct features of an indirect spino-cerebellar route, via the brainstem lateral reticular nucleus (LRN), and the implications of this pre-cerebellar “detour” for the execution and evolution of limb motor control. Both direct and indirect spino-cerebellar pathways signal spinal interneuronal activity to the cerebellum during movements, but evidence suggests that direct SCT neurons are mainly modulated by rhythmic activity, whereas the LRN also receives information from systems active during postural adjustment, reaching and grasping. Thus, while direct and indirect spino-cerebellar circuits can both be regarded as internal copy pathways, it seems likely that the direct system is principally dedicated to rhythmic motor acts like locomotion, while the indirect system also provides a means of pre-cerebellar integration relevant to the execution and coordination of dexterous limb movements.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Integrative Medical Biology, Section of Physiology, Umeå University Umeå, Sweden
| | - Eiman Azim
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University New York, NY, USA
| | | | - Bror Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University Umeå, Sweden
| |
Collapse
|
8
|
Brown SA, Loew LM. Integration of modeling with experimental and clinical findings synthesizes and refines the central role of inositol 1,4,5-trisphosphate receptor 1 in spinocerebellar ataxia. Front Neurosci 2015; 8:453. [PMID: 25653583 PMCID: PMC4300941 DOI: 10.3389/fnins.2014.00453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/22/2014] [Indexed: 12/22/2022] Open
Abstract
A suite of models was developed to study the role of inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in spinocerebellar ataxias (SCAs). Several SCAs are linked to reduced abundance of IP3R1 or to supranormal sensitivity of the receptor to activation by its ligand inositol 1,4,5-trisphosphate (IP3). Detailed multidimensional models have been created to simulate biochemical calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons. In these models, IP3R1-mediated calcium release is allowed to interact with ion channel response on the cell membrane. Experimental findings in mice and clinical observations in humans provide data input for the models. The SCA modeling suite helps interpret experimental results and provides suggestions to guide experiments. The models predict IP3R1 supersensitivity in SCA1 and compensatory mechanisms in SCA1, SCA2, and SCA3. Simulations explain the impact of calcium buffer proteins. Results show that IP3R1-mediated calcium release activates voltage-gated calcium-activated potassium channels in the plasma membrane. The SCA modeling suite unifies observations from experiments in a number of SCAs. The cadre of simulations demonstrates the central role of IP3R1.
Collapse
Affiliation(s)
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|