1
|
Malekmohammadi A, Cheng G. Music Familiarization Elicits Functional Connectivity Between Right Frontal/Temporal and Parietal Areas in the Theta and Alpha Bands. Brain Topogr 2024; 38:2. [PMID: 39367155 PMCID: PMC11452474 DOI: 10.1007/s10548-024-01081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/13/2024] [Indexed: 10/06/2024]
Abstract
Frequent listening to unfamiliar music excerpts forms functional connectivity in the brain as music becomes familiar and memorable. However, where these connections spectrally arise in the cerebral cortex during music familiarization has yet to be determined. This study investigates electrophysiological changes in phase-based functional connectivity recorded with electroencephalography (EEG) from twenty participants' brains during thrice passive listening to initially unknown classical music excerpts. Functional connectivity is evaluated based on measuring phase synchronization between all pairwise combinations of EEG electrodes across all repetitions via repeated measures ANOVA and between every two repetitions of listening to unknown music with the weighted phase lag index (WPLI) method in different frequency bands. The results indicate an increased phase synchronization during gradual short-term familiarization between the right frontal and the right parietal areas in the theta and alpha bands. In addition, the increased phase synchronization is discovered between the right temporal areas and the right parietal areas at the theta band during gradual music familiarization. Overall, this study explores the short-term music familiarization effects on neural responses by revealing that repetitions form phasic coupling in the theta and alpha bands in the right hemisphere during passive listening.
Collapse
Affiliation(s)
- Alireza Malekmohammadi
- Electrical Engineering, Institute for Cognitive Systems, Technical University of Munich, 80333, Munich, Germany.
| | - Gordon Cheng
- Electrical Engineering, Institute for Cognitive Systems, Technical University of Munich, 80333, Munich, Germany
| |
Collapse
|
2
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
3
|
Li Q, Liu G, Zhang Y, Wu J, Huang R. Neural correlates of musical familiarity: a functional magnetic resonance study. Cereb Cortex 2024; 34:bhae177. [PMID: 38679480 DOI: 10.1093/cercor/bhae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Existing neuroimaging studies on neural correlates of musical familiarity often employ a familiar vs. unfamiliar contrast analysis. This singular analytical approach reveals associations between explicit musical memory and musical familiarity. However, is the neural activity associated with musical familiarity solely related to explicit musical memory, or could it also be related to implicit musical memory? To address this, we presented 130 song excerpts of varying familiarity to 21 participants. While acquiring their brain activity using functional magnetic resonance imaging (fMRI), we asked the participants to rate the familiarity of each song on a five-point scale. To comprehensively analyze the neural correlates of musical familiarity, we examined it from four perspectives: the intensity of local neural activity, patterns of local neural activity, global neural activity patterns, and functional connectivity. The results from these four approaches were consistent and revealed that musical familiarity is related to the activity of both explicit and implicit musical memory networks. Our findings suggest that: (1) musical familiarity is also associated with implicit musical memory, and (2) there is a cooperative and competitive interaction between the two types of musical memory in the perception of music.
Collapse
Affiliation(s)
- Qiang Li
- Department of Applied Psychology, College of Education Science, Guizhou Education University, No. 115, Gaoxin Street, Wudang, Guiyang 550018, China
| | - Guangyuan Liu
- Department of Electronic and Information Engineering, College of Electronic and Information Engineering, Southwest University, Tian Sheng road, No. 2, Beibei, Chongqing 400715, China
| | - Yuan Zhang
- Department of Applied Psychology, College of Education Science, Guizhou Education University, No. 115, Gaoxin Street, Wudang, Guiyang 550018, China
| | - Junhua Wu
- Department of Applied Psychology, College of Education Science, Guizhou Education University, No. 115, Gaoxin Street, Wudang, Guiyang 550018, China
| | - Rong Huang
- Department of Applied Psychology, College of Education Science, Guizhou Education University, No. 115, Gaoxin Street, Wudang, Guiyang 550018, China
| |
Collapse
|
4
|
Ren Y, Brown TI. Beyond the ears: A review exploring the interconnected brain behind the hierarchical memory of music. Psychon Bull Rev 2024; 31:507-530. [PMID: 37723336 DOI: 10.3758/s13423-023-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Music is a ubiquitous element of daily life. Understanding how music memory is represented and expressed in the brain is key to understanding how music can influence human daily cognitive tasks. Current music-memory literature is built on data from very heterogeneous tasks for measuring memory, and the neural correlates appear to differ depending on different forms of memory function targeted. Such heterogeneity leaves many exceptions and conflicts in the data underexplained (e.g., hippocampal involvement in music memory is debated). This review provides an overview of existing neuroimaging results from music-memory related studies and concludes that although music is a special class of event in our lives, the memory systems behind it do in fact share neural mechanisms with memories from other modalities. We suggest that dividing music memory into different levels of a hierarchy (structural level and semantic level) helps understand overlap and divergence in neural networks involved. This is grounded in the fact that memorizing a piece of music recruits brain clusters that separately support functions including-but not limited to-syntax storage and retrieval, temporal processing, prediction versus reality comparison, stimulus feature integration, personal memory associations, and emotion perception. The cross-talk between frontal-parietal music structural processing centers and the subcortical emotion and context encoding areas explains why music is not only so easily memorable but can also serve as strong contextual information for encoding and retrieving nonmusic information in our lives.
Collapse
Affiliation(s)
- Yiren Ren
- Georgia Institute of Technology, College of Science, School of Psychology, Atlanta, GA, USA.
| | - Thackery I Brown
- Georgia Institute of Technology, College of Science, School of Psychology, Atlanta, GA, USA
| |
Collapse
|
5
|
Vuong V, Hewan P, Perron M, Thaut MH, Alain C. The neural bases of familiar music listening in healthy individuals: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2023; 154:105423. [PMID: 37839672 DOI: 10.1016/j.neubiorev.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Accumulating evidence suggests that the neural activations during music listening differs as a function of familiarity with the excerpts. However, the implicated brain areas are unclear. After an extensive literature search, we conducted an Activation Likelihood Estimation analysis on 23 neuroimaging studies (232 foci, 364 participants) to identify consistently activated brain regions when healthy adults listen to familiar music, compared to unfamiliar music or an equivalent condition. The results revealed a left cortical-subcortical co-activation pattern comprising three significant clusters localized to the supplementary motor areas (BA 6), inferior frontal gyrus (IFG, BA 44), and the claustrum/insula. Our results are discussed in a predictive coding framework, whereby temporal expectancies and familiarity may drive motor activations, despite any overt movement. Though conventionally associated with syntactic violation, our observed activation in the IFG may support a recent proposal of its involvement in a network that subserves both violation and prediction. Finally, the claustrum/insula plays an integral role in auditory processing, functioning as a hub that integrates sensory and limbic information to (sub)cortical structures.
Collapse
Affiliation(s)
- Veronica Vuong
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada; Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON M5S 2C5, Canada.
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - Maxime Perron
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Michael H Thaut
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON M5S 2C5, Canada; Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Claude Alain
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada; Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON M5S 2C5, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| |
Collapse
|
6
|
Olszewska AM, Droździel D, Gaca M, Kulesza A, Obrębski W, Kowalewski J, Widlarz A, Marchewka A, Herman AM. Unlocking the musical brain: A proof-of-concept study on playing the piano in MRI scanner with naturalistic stimuli. Heliyon 2023; 9:e17877. [PMID: 37501960 PMCID: PMC10368778 DOI: 10.1016/j.heliyon.2023.e17877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Music is a universal human phenomenon, and can be studied for itself or as a window into the understanding of the brain. Few neuroimaging studies investigate actual playing in the MRI scanner, likely because of the lack of available experimental hardware and analysis tools. Here, we offer an innovative paradigm that addresses this issue in neuromusicology using naturalistic, polyphonic musical stimuli, presents a commercially available MRI-compatible piano, and a flexible approach to quantify participant's performance. We show how making errors while playing can be investigated using an altered auditory feedback paradigm. In the spirit of open science, we make our experimental paradigms and analysis tools available to other researchers studying pianists in MRI. Altogether, we present a proof-of-concept study which shows the feasibility of playing the novel piano in MRI, and a step towards using more naturalistic stimuli.
Collapse
Affiliation(s)
- Alicja M. Olszewska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Dawid Droździel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Agnieszka Kulesza
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Wojciech Obrębski
- Department of Nuclear and Medical Electronics, Faculty of Electronics and Information Technology, Warsaw University of Technology, 1 Politechniki Square, 00-661 Warsaw, Poland
- 10 Murarska Street, 08-110 Siedlce, Poland
| | | | - Agnieszka Widlarz
- Chair of Rhythmics and Piano Improvisation, Department of Choir Conducting and Singing, Music Education and Rhythmics, The Chopin University of Music, Okolnik 2 Street, 00–368 Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Aleksandra M. Herman
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
7
|
Bonetti L, Brattico E, Bruzzone SEP, Donati G, Deco G, Pantazis D, Vuust P, Kringelbach ML. Brain recognition of previously learned versus novel temporal sequences: a differential simultaneous processing. Cereb Cortex 2022; 33:5524-5537. [PMID: 36346308 PMCID: PMC10152090 DOI: 10.1093/cercor/bhac439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Memory for sequences is a central topic in neuroscience, and decades of studies have investigated the neural mechanisms underlying the coding of a wide array of sequences extended over time. Yet, little is known on the brain mechanisms underlying the recognition of previously memorized versus novel temporal sequences. Moreover, the differential brain processing of single items in an auditory temporal sequence compared to the whole superordinate sequence is not fully understood. In this magnetoencephalography (MEG) study, the items of the temporal sequence were independently linked to local and rapid (2–8 Hz) brain processing, while the whole sequence was associated with concurrent global and slower (0.1–1 Hz) processing involving a widespread network of sequentially active brain regions. Notably, the recognition of previously memorized temporal sequences was associated to stronger activity in the slow brain processing, while the novel sequences required a greater involvement of the faster brain processing. Overall, the results expand on well-known information flow from lower- to higher order brain regions. In fact, they reveal the differential involvement of slow and faster whole brain processing to recognize previously learned versus novel temporal information.
Collapse
Affiliation(s)
- L Bonetti
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford , Stoke place 7, OX39BX, Oxford , UK
- University of Oxford Department of Psychiatry, , Oxford, UK
- University of Bologna Department of Psychology, , Italy
| | - E Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- University of Bari Aldo Moro Department of Education, Psychology, Communication, , Italy
| | - S E P Bruzzone
- Center for Music in the Brain (MIB) , Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, 8000, Aarhus C , Denmark
- Copenhagen University Hospital Rigshospitalet Neurobiology Research Unit (NRU), , Inge Lehmanns Vej 6, 2100, Copenhagen , Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen , Blegdamsvej 3B, 2200, Copenhagen , Denmark
| | - G Donati
- University of Bologna Department of Psychology, , Italy
| | - G Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra Computational and Theoretical Neuroscience Group, , Edifici Merce Rodereda, C/ de Ramon Trias Fargas, 25, 08018 Barcelona , Spain
| | - D Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT) , 77 Massachusetts Ave, Cambridge, MA 02139 , USA
| | - P Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
| | - M L Kringelbach
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford , Stoke place 7, OX39BX, Oxford , UK
- University of Oxford Department of Psychiatry, , Oxford, UK
| |
Collapse
|
8
|
Freitas C, Hunt BAE, Wong SM, Ristic L, Fragiadakis S, Chow S, Iaboni A, Brian J, Soorya L, Chen JL, Schachar R, Dunkley BT, Taylor MJ, Lerch JP, Anagnostou E. Atypical Functional Connectivity During Unfamiliar Music Listening in Children With Autism. Front Neurosci 2022; 16:829415. [PMID: 35516796 PMCID: PMC9063167 DOI: 10.3389/fnins.2022.829415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Atypical processing of unfamiliar, but less so familiar, stimuli has been described in Autism Spectrum Disorder (ASD), in particular in relation to face processing. We examined the construct of familiarity in ASD using familiar and unfamiliar songs, to investigate the link between familiarity and autism symptoms, such as repetitive behavior. Methods Forty-eight children, 24 with ASD (21 males, mean age = 9.96 years ± 1.54) and 24 typically developing (TD) controls (21 males, mean age = 10.17 ± 1.90) completed a music familiarity task using individually identified familiar compared to unfamiliar songs, while magnetoencephalography (MEG) was recorded. Each song was presented for 30 s. We used both amplitude envelope correlation (AEC) and the weighted phase lag index (wPLI) to assess functional connectivity between specific regions of interest (ROI) and non-ROI parcels, as well as at the whole brain level, to understand what is preserved and what is impaired in familiar music listening in this population. Results Increased wPLI synchronization for familiar vs. unfamiliar music was found for typically developing children in the gamma frequency. There were no significant differences within the ASD group for this comparison. During the processing of unfamiliar music, we demonstrated left lateralized increased theta and beta band connectivity in children with ASD compared to controls. An interaction effect found greater alpha band connectivity in the TD group compared to ASD to unfamiliar music only, anchored in the left insula. Conclusion Our results revealed atypical processing of unfamiliar songs in children with ASD, consistent with previous studies in other modalities reporting that processing novelty is a challenge for ASD. Relatively typical processing of familiar stimuli may represent a strength and may be of interest to strength-based intervention planning.
Collapse
Affiliation(s)
- Carina Freitas
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Benjamin A. E. Hunt
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Simeon M. Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Leanne Ristic
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Susan Fragiadakis
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stephanie Chow
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Alana Iaboni
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States
| | - Joyce L. Chen
- Faculty of Kinesiology and Physical Education and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Department of Psychiatry Research, Hospital for Sick Children, Toronto, ON, Canada
| | - Benjamin T. Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Margot J. Taylor
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Departments of Psychology and Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jason P. Lerch
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Evdokia Anagnostou
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Loukas S, Lordier L, Meskaldji DE, Filippa M, Sa de Almeida J, Van De Ville D, Hüppi PS. Musical memories in newborns: A resting-state functional connectivity study. Hum Brain Mapp 2022; 43:647-664. [PMID: 34738276 PMCID: PMC8720188 DOI: 10.1002/hbm.25677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022] Open
Abstract
Music is known to induce emotions and activate associated memories, including musical memories. In adults, it is well known that music activates both working memory and limbic networks. We have recently discovered that as early as during the newborn period, familiar music is processed differently from unfamiliar music. The present study evaluates music listening effects at the brain level in newborns, by exploring the impact of familiar or first‐time music listening on the subsequent resting‐state functional connectivity in the brain. Using a connectome‐based framework, we describe resting‐state functional connectivity (RS‐FC) modulation after music listening in three groups of newborn infants, in preterm infants exposed to music during their neonatal‐intensive‐care‐unit (NICU) stay, in control preterm, and full‐term infants. We observed modulation of the RS‐FC between brain regions known to be implicated in music and emotions processing, immediately following music listening in all newborn infants. In the music exposed group, we found increased RS‐FC between brain regions known to be implicated in familiar and emotionally arousing music and multisensory processing, and therefore implying memory retrieval and associative memory. We demonstrate a positive correlation between the occurrence of the prior music exposure and increased RS‐FC in brain regions implicated in multisensory and emotional processing, indicating strong engagement of musical memories; and a negative correlation with the Default Mode Network, indicating disengagement due to the aforementioned cognitive processing. Our results describe the modulatory effect of music listening on brain RS‐FC that can be linked to brain correlates of musical memory engrams in preterm infants.
Collapse
Affiliation(s)
- Serafeim Loukas
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Djalel-Eddine Meskaldji
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Manuela Filippa
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Joana Sa de Almeida
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Bonetti L, Brattico E, Carlomagno F, Donati G, Cabral J, Haumann NT, Deco G, Vuust P, Kringelbach ML. Rapid encoding of musical tones discovered in whole-brain connectivity. Neuroimage 2021; 245:118735. [PMID: 34813972 DOI: 10.1016/j.neuroimage.2021.118735] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
Abstract
Information encoding has received a wide neuroscientific attention, but the underlying rapid spatiotemporal brain dynamics remain largely unknown. Here, we investigated the rapid brain mechanisms for encoding of sounds forming a complex temporal sequence. Specifically, we used magnetoencephalography (MEG) to record the brain activity of 68 participants while they listened to a highly structured musical prelude. Functional connectivity analyses performed using phase synchronisation and graph theoretical measures showed a large network of brain areas recruited during encoding of sounds, comprising primary and secondary auditory cortices, frontal operculum, insula, hippocampus and basal ganglia. Moreover, our results highlighted the rapid transition of brain activity from primary auditory cortex to higher order association areas including insula and superior temporal pole within a whole-brain network, occurring during the first 220 ms of the encoding process. Further, we discovered that individual differences along cognitive abilities and musicianship modulated the degree centrality of the brain areas implicated in the encoding process. Indeed, participants with higher musical expertise presented a stronger centrality of superior temporal gyrus and insula, while individuals with high working memory abilities showed a stronger centrality of frontal operculum. In conclusion, our study revealed the rapid unfolding of brain network dynamics responsible for the encoding of sounds and their relationship with individual differences, showing a complex picture which extends beyond the well-known involvement of auditory areas. Indeed, our results expanded our understanding of the general mechanisms underlying auditory pattern encoding in the human brain.
Collapse
Affiliation(s)
- L Bonetti
- Centre for Eudaimonia and Human Flourishing, University of Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy.
| | - E Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy
| | - F Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - G Donati
- Department of Psychology, University of Bologna, Italy; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - J Cabral
- Centre for Eudaimonia and Human Flourishing, University of Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - N T Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - G Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain; Computational and Theoretical Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - M L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Benhamou E, Zhao S, Sivasathiaseelan H, Johnson JCS, Requena-Komuro MC, Bond RL, van Leeuwen JEP, Russell LL, Greaves CV, Nelson A, Nicholas JM, Hardy CJD, Rohrer JD, Warren JD. Decoding expectation and surprise in dementia: the paradigm of music. Brain Commun 2021; 3:fcab173. [PMID: 34423301 PMCID: PMC8376684 DOI: 10.1093/braincomms/fcab173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Making predictions about the world and responding appropriately to unexpected events are essential functions of the healthy brain. In neurodegenerative disorders, such as frontotemporal dementia and Alzheimer's disease, impaired processing of 'surprise' may underpin a diverse array of symptoms, particularly abnormalities of social and emotional behaviour, but is challenging to characterize. Here, we addressed this issue using a novel paradigm: music. We studied 62 patients (24 female; aged 53-88) representing major syndromes of frontotemporal dementia (behavioural variant, semantic variant primary progressive aphasia, non-fluent-agrammatic variant primary progressive aphasia) and typical amnestic Alzheimer's disease, in relation to 33 healthy controls (18 female; aged 54-78). Participants heard famous melodies containing no deviants or one of three types of deviant note-acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). Using a regression model that took elementary perceptual, executive and musical competence into account, we assessed accuracy detecting melodic deviants and simultaneously recorded pupillary responses and related these to deviant surprise value (information-content) and carrier melody predictability (entropy), calculated using an unsupervised machine learning model of music. Neuroanatomical associations of deviant detection accuracy and coupling of detection to deviant surprise value were assessed using voxel-based morphometry of patients' brain MRI. Whereas Alzheimer's disease was associated with normal deviant detection accuracy, behavioural and semantic variant frontotemporal dementia syndromes were associated with strikingly similar profiles of impaired syntactic and semantic deviant detection accuracy and impaired behavioural and autonomic sensitivity to deviant information-content (all P < 0.05). On the other hand, non-fluent-agrammatic primary progressive aphasia was associated with generalized impairment of deviant discriminability (P < 0.05) due to excessive false-alarms, despite retained behavioural and autonomic sensitivity to deviant information-content and melody predictability. Across the patient cohort, grey matter correlates of acoustic deviant detection accuracy were identified in precuneus, mid and mesial temporal regions; correlates of syntactic deviant detection accuracy and information-content processing, in inferior frontal and anterior temporal cortices, putamen and nucleus accumbens; and a common correlate of musical salience coding in supplementary motor area (all P < 0.05, corrected for multiple comparisons in pre-specified regions of interest). Our findings suggest that major dementias have distinct profiles of sensory 'surprise' processing, as instantiated in music. Music may be a useful and informative paradigm for probing the predictive decoding of complex sensory environments in neurodegenerative proteinopathies, with implications for understanding and measuring the core pathophysiology of these diseases.
Collapse
Affiliation(s)
- Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jeremy C S Johnson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Maï-Carmen Requena-Komuro
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Janneke E P van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Annabel Nelson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
12
|
Calma-Roddin N, Drury JE. Music, Language, and The N400: ERP Interference Patterns Across Cognitive Domains. Sci Rep 2020; 10:11222. [PMID: 32641708 PMCID: PMC7343814 DOI: 10.1038/s41598-020-66732-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
Studies of the relationship of language and music have suggested these two systems may share processing resources involved in the computation/maintenance of abstract hierarchical structure (syntax). One type of evidence comes from ERP interference studies involving concurrent language/music processing showing interaction effects when both processing streams are simultaneously perturbed by violations (e.g., syntactically incorrect words paired with incongruent completion of a chord progression). Here, we employ this interference methodology to target the mechanisms supporting long term memory (LTM) access/retrieval in language and music. We used melody stimuli from previous work showing out-of-key or unexpected notes may elicit a musical analogue of language N400 effects, but only for familiar melodies, and not for unfamiliar ones. Target notes in these melodies were time-locked to visually presented target words in sentence contexts manipulating lexical/conceptual semantic congruity. Our study succeeded in eliciting expected N400 responses from each cognitive domain independently. Among several new findings we argue to be of interest, these data demonstrate that: (i) language N400 effects are delayed in onset by concurrent music processing only when melodies are familiar, and (ii) double violations with familiar melodies (but not with unfamiliar ones) yield a sub-additive N400 response. In addition: (iii) early negativities (RAN effects), which previous work has connected to musical syntax, along with the music N400, were together delayed in onset for familiar melodies relative to the timing of these effects reported in the previous music-only study using these same stimuli, and (iv) double violation cases involving unfamiliar/novel melodies also delayed the RAN effect onset. These patterns constitute the first demonstration of N400 interference effects across these domains and together contribute previously undocumented types of interactions to the available pool of findings relevant to understanding whether language and music may rely on shared underlying mechanisms.
Collapse
Affiliation(s)
- Nicole Calma-Roddin
- Department of Behavioral Sciences, New York Institute of Technology, Old Westbury, New York, USA.
- Department of Psychology, Stony Brook University, New York, USA.
| | - John E Drury
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
13
|
Slattery CF, Agustus JL, Paterson RW, McCallion O, Foulkes AJM, Macpherson K, Carton AM, Harding E, Golden HL, Jaisin K, Mummery CJ, Schott JM, Warren JD. The functional neuroanatomy of musical memory in Alzheimer's disease. Cortex 2019; 115:357-370. [PMID: 30846199 PMCID: PMC6525150 DOI: 10.1016/j.cortex.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
Background Memory for music has attracted much recent interest in Alzheimer's disease but the underlying brain mechanisms have not been defined in patients directly. Here we addressed this issue in an Alzheimer's disease cohort using activation fMRI of two core musical memory systems. Methods We studied 34 patients with younger onset Alzheimer's disease led either by episodic memory decline (typical Alzheimer's disease) or by visuospatial impairment (posterior cortical atrophy) in relation to 19 age-matched healthy individuals. We designed a novel fMRI paradigm based on passive listening to melodies that were either previously familiar or unfamiliar (musical semantic memory) and either presented singly or repeated (incidental musical episodic memory). Results Both syndromic groups showed significant functional neuroanatomical alterations relative to the healthy control group. For musical semantic memory, disease-associated activation group differences were localised to right inferior frontal cortex (reduced activation in the group with memory-led Alzheimer's disease); while for incidental musical episodic memory, disease-associated activation group differences were localised to precuneus and posterior cingulate cortex (abnormally enhanced activation in the syndromic groups). In post-scan behavioural testing, both patient groups had a deficit of musical episodic memory relative to healthy controls whereas musical semantic memory was unimpaired. Conclusions Our findings define functional neuroanatomical substrates for the differential involvement of musical semantic and incidental episodic memory in major phenotypes of Alzheimer's disease. The complex dynamic profile of brain activation group differences observed suggests that musical memory may be an informative probe of neural network function in Alzheimer's disease. These findings may guide the development of future musical interventions in dementia.
Collapse
Affiliation(s)
- Catherine F Slattery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Jennifer L Agustus
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Ross W Paterson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Oliver McCallion
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Alexander J M Foulkes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Kirsty Macpherson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Amelia M Carton
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Emma Harding
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Hannah L Golden
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Kankamol Jaisin
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Catherine J Mummery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
14
|
Agustus JL, Golden HL, Callaghan MF, Bond RL, Benhamou E, Hailstone JC, Weiskopf N, Warren JD. Melody Processing Characterizes Functional Neuroanatomy in the Aging Brain. Front Neurosci 2018; 12:815. [PMID: 30524219 PMCID: PMC6262413 DOI: 10.3389/fnins.2018.00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/19/2018] [Indexed: 11/13/2022] Open
Abstract
The functional neuroanatomical mechanisms underpinning cognition in the normal older brain remain poorly defined, but have important implications for understanding the neurobiology of aging and the impact of neurodegenerative diseases. Auditory processing is an attractive model system for addressing these issues. Here, we used fMRI of melody processing to investigate auditory pattern processing in normal older individuals. We manipulated the temporal (rhythmic) structure and familiarity of melodies in a passive listening, 'sparse' fMRI protocol. A distributed cortico-subcortical network was activated by auditory stimulation compared with silence; and within this network, we identified separable signatures of anisochrony processing in bilateral posterior superior temporal lobes; melodic familiarity in bilateral anterior temporal and inferior frontal cortices; and melodic novelty in bilateral temporal and left parietal cortices. Left planum temporale emerged as a 'hub' region functionally partitioned for processing different melody dimensions. Activation of Heschl's gyrus by auditory stimulation correlated with the integrity of underlying cortical tissue architecture, measured using multi-parameter mapping. Our findings delineate neural substrates for analyzing perceptual and semantic properties of melodies in normal aging. Melody (auditory pattern) processing may be a useful candidate paradigm for assessing cerebral networks in the older brain and potentially, in neurodegenerative diseases of later life.
Collapse
Affiliation(s)
- Jennifer L. Agustus
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Hannah L. Golden
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Martina F. Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca L. Bond
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Elia Benhamou
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Julia C. Hailstone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jason D. Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Freitas C, Manzato E, Burini A, Taylor MJ, Lerch JP, Anagnostou E. Neural Correlates of Familiarity in Music Listening: A Systematic Review and a Neuroimaging Meta-Analysis. Front Neurosci 2018; 12:686. [PMID: 30344470 PMCID: PMC6183416 DOI: 10.3389/fnins.2018.00686] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022] Open
Abstract
Familiarity in music has been reported as an important factor modulating emotional and hedonic responses in the brain. Familiarity and repetition may increase the liking of a piece of music, thus inducing positive emotions. Neuroimaging studies have focused on identifying the brain regions involved in the processing of familiar and unfamiliar musical stimuli. However, the use of different modalities and experimental designs has led to discrepant results and it is not clear which areas of the brain are most reliably engaged when listening to familiar and unfamiliar musical excerpts. In the present study, we conducted a systematic review from three databases (Medline, PsychoINFO, and Embase) using the keywords (recognition OR familiar OR familiarity OR exposure effect OR repetition) AND (music OR song) AND (brain OR brains OR neuroimaging OR functional Magnetic Resonance Imaging OR Position Emission Tomography OR Electroencephalography OR Event Related Potential OR Magnetoencephalography). Of the 704 titles identified, 23 neuroimaging studies met our inclusion criteria for the systematic review. After removing studies providing insufficient information or contrasts, 11 studies (involving 212 participants) qualified for the meta-analysis using the activation likelihood estimation (ALE) approach. Our results did not find significant peak activations consistently across included studies. Using a less conservative approach (p < 0.001, uncorrected for multiple comparisons) we found that the left superior frontal gyrus, the ventral lateral (VL) nucleus of the left thalamus, and the left medial surface of the superior frontal gyrus had the highest likelihood of being activated by familiar music. On the other hand, the left insula, and the right anterior cingulate cortex had the highest likelihood of being activated by unfamiliar music. We had expected limbic structures as top clusters when listening to familiar music. But, instead, music familiarity had a motor pattern of activation. This could reflect an audio-motor synchronization to the rhythm which is more engaging for familiar tunes, and/or a sing-along response in one's mind, anticipating melodic, harmonic progressions, rhythms, timbres, and lyric events in the familiar songs. These data provide evidence for the need for larger neuroimaging studies to understand the neural correlates of music familiarity.
Collapse
Affiliation(s)
- Carina Freitas
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | | | | | - Margot J. Taylor
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jason P. Lerch
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Abe M, Tabei KI, Satoh M, Fukuda M, Daikuhara H, Shiga M, Kida H, Tomimoto H. Impairment of the Missing Fundamental Phenomenon in Individuals with Alzheimer’s Disease: A Neuropsychological and Voxel-Based Morphometric Study. Dement Geriatr Cogn Dis Extra 2018. [PMID: 29515620 PMCID: PMC5836147 DOI: 10.1159/000486331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background/Aims The missing fundamental phenomenon (MFP) is a universal pitch perception illusion that occurs in animals and humans. In this study, we aimed to determine whether the MFP is impaired in patients with Alzheimer's disease (AD) using an auditory pitch perception experiment. We further examined anatomical correlates of the MFP in patients with AD by measuring gray matter volume (GMV) on magnetic resonance images via voxel-based morphometric analysis. Methods We prospectively enrolled 29 patients with AD and 20 healthy older adults. Auditory stimuli included 12 melodies of Japanese nursery songs that were expected to be familiar to participants. We constructed the melodies using pure and missing fundamental tones (MFTs). Results Patients with AD exhibited significantly poorer performance on the MFT task than healthy controls. MFT scores were positively correlated with GMV in the bilateral insula and temporal poles, left inferior frontal gyrus, right entorhinal cortex, and right cerebellum. Conclusions These results suggest that impairments in the MFP represent a manifestation of the degeneration of auditory-related brain regions in AD. Further studies are required to more fully elucidate the neural mechanisms underlying auditory impairments in patients with AD and related dementia disorders.
Collapse
Affiliation(s)
- Makiko Abe
- aDepartment of Dementia Prevention and Therapeutics, Graduate School of Medicine, Mie University, Mie, Japan
| | - Ken-ichi Tabei
- aDepartment of Dementia Prevention and Therapeutics, Graduate School of Medicine, Mie University, Mie, Japan
- bDepartment of Neurology, Graduate School of Medicine, Mie University, Mie, Japan
- *Ken-ichi Tabei and Masayuki Satoh, Mie University, 2-174 Edobashi Tsu-shi, Mie 514-8507 (Japan), E-Mail (K.T.) and (M.S.)
| | - Masayuki Satoh
- aDepartment of Dementia Prevention and Therapeutics, Graduate School of Medicine, Mie University, Mie, Japan
| | - Mari Fukuda
- aDepartment of Dementia Prevention and Therapeutics, Graduate School of Medicine, Mie University, Mie, Japan
| | | | - Mariko Shiga
- dMie Prefectural Dementia-Related Disease Medical Center, Mie, Japan
| | - Hirotaka Kida
- aDepartment of Dementia Prevention and Therapeutics, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hidekazu Tomimoto
- aDepartment of Dementia Prevention and Therapeutics, Graduate School of Medicine, Mie University, Mie, Japan
- bDepartment of Neurology, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
17
|
Abstract
The hallmark symptom of Alzheimer's Dementia (AD) is impaired memory, but memory for familiar music can be preserved. We explored whether a non-musician with severe AD could learn a new song. A 91 year old woman (NC) with severe AD was taught an unfamiliar song. We assessed her delayed song recall (24 hours and 2 weeks), music cognition, two word recall (presented within a familiar song lyric, a famous proverb, or as a word stem completion task), and lyrics and proverb completion. NC's music cognition (pitch and rhythm perception, recognition of familiar music, completion of lyrics) was relatively preserved. She recalled 0/2 words presented in song lyrics or proverbs, but 2/2 word stems, suggesting intact implicit memory function. She could sing along to the newly learnt song on immediate and delayed recall (24 hours and 2 weeks later), and with intermittent prompting could sing it alone. This is the first detailed study of preserved ability to learn a new song in a non-musician with severe AD, and contributes to observations of relatively preserved musical abilities in people with dementia.
Collapse
Affiliation(s)
- Amee Baird
- a Australian Research Council Centre of Excellence in Cognition and its Disorders and Psychology Department , Macquarie University , Sydney , Australia
| | - Heidi Umbach
- a Australian Research Council Centre of Excellence in Cognition and its Disorders and Psychology Department , Macquarie University , Sydney , Australia
| | - William Forde Thompson
- a Australian Research Council Centre of Excellence in Cognition and its Disorders and Psychology Department , Macquarie University , Sydney , Australia
| |
Collapse
|
18
|
Baird A, Samson S, Miller L, Chalmers K. Does music training facilitate the mnemonic effect of song? An exploration of musicians and nonmusicians with and without Alzheimer's dementia. J Clin Exp Neuropsychol 2016; 39:9-21. [PMID: 27309634 DOI: 10.1080/13803395.2016.1185093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The efficacy of using sung words as a mnemonic device for verbal memory has been documented in persons with probable Alzheimer's dementia (AD), but it is not yet known whether this effect is related to music training. Given that music training can enhance cognitive functioning, we explored the effects of music training and modality (sung vs. spoken) on verbal memory in persons with and without AD. METHOD We used a mixed factorial design to compare learning (5 trials), delayed recall (30-min and, 24-hour), and recognition of sung versus spoken information in 22 healthy elderly (15 musicians), and 11 people with AD (5 musicians). RESULTS Musicians with AD showed better total learning (over 5 trials) of sung information than nonmusicians with AD. There were no significant differences in delayed recall and recognition accuracy (of either modality) between musicians with and without AD, suggesting that music training may facilitate memory function in AD. Analysis of individual performances showed that two of the five musicians with AD were able to recall some information on delayed recall, whereas the nonmusicians with AD recalled no information on delay. The only significant finding in regard to modality (sung vs. spoken) was that total learning was significantly worse for sung than spoken information for nonmusicians with AD. This may be due to the need to recode information presented in song into spoken recall, which may be more cognitively demanding for this group. CONCLUSIONS This is the first study to demonstrate that music training modulates memory of sung and spoken information in AD. The mechanism underlying these results is unclear, but may be due to music training, higher cognitive abilities, or both. Our findings highlight the need for further research into the potentially protective effect of music training on cognitive abilities in our aging population.
Collapse
Affiliation(s)
- Amee Baird
- a ARC Centre of Excellence in Cognition and its Disorders , Sydney , NSW , Australia.,b Psychology Department , Macquarie University , Sydney , NSW , Australia
| | - Séverine Samson
- c Neuropsychology: Audition, Cognition, Action, Laboratory PSITEC (EA 4072) , University of Lille , Lille , France.,d La Pitié-Salpêtrière Hospital , Paris , France
| | - Laurie Miller
- a ARC Centre of Excellence in Cognition and its Disorders , Sydney , NSW , Australia.,e Neuropsychology Department , Royal Prince Alfred Hospital and Central Medical School, University of Sydney , Sydney , NSW , Australia
| | - Kerry Chalmers
- f School of Psychology , University of Newcastle , Newcastle , NSW , Australia
| |
Collapse
|
19
|
López-Loeza E, Rangel-Argueta AR, López-Vázquez MÁ, Cervantes M, Olvera-Cortés ME. Differences in EEG power in young and mature healthy adults during an incidental/spatial learning task are related to age and execution efficiency. AGE (DORDRECHT, NETHERLANDS) 2016; 38:37. [PMID: 26961695 PMCID: PMC5005903 DOI: 10.1007/s11357-016-9896-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/23/2016] [Indexed: 04/16/2023]
Abstract
The differential characteristics of absolute power in the EEG theta (4-8 Hz) and gamma (30-45 Hz) frequency bands have been analysed in young (18-25 years old, n = 14) and mature adults (45-65 years old, n = 12) during the incidental or intentional behavioural conditions of learning and recalling in a visuospatial task. A printed drawing of a maze including eight figures of common objects in specific placements, solved by connecting its entrance and exit points, allowed the subject's performance efficiency to be measured based on the number, position accuracy and/or identity of incidentally or intentionally learned and remembered objects. Meanwhile, EEG recordings from frontal, parietal and temporal derivations were obtained to determine the power values of the theta (4-8 Hz) and gamma (30-45 Hz) bands for each behavioural condition and derivation. Relative to the young adults, the mature adults generally showed lower absolute theta power values, mainly due to their low theta powers under the basal and incidental learning conditions, and higher absolute gamma power values in the frontal and temporal regions. Furthermore, higher theta band power in the frontal regions was related to higher performance efficiency in both incidental and intentional learning, regardless of the subjects' age. A significant negative correlation between the parameters of individual incidental or intentional learning performance and age was also found. Indeed, a differential accuracy of remembered information seems to be associated with age and incidental or intentional learning/memory testing conditions. These data support an increasing vulnerability of visuospatial learning abilities at mature ages and as ageing progresses.
Collapse
Affiliation(s)
- Elisa López-Loeza
- Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C3, Ciudad Universitaria, Francisco J. Múgica s/n, Col. Felicitas del Río, 58040, Morelia, Michoacán, México
| | - Ana Rosa Rangel-Argueta
- Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C3, Ciudad Universitaria, Francisco J. Múgica s/n, Col. Felicitas del Río, 58040, Morelia, Michoacán, México
| | - Miguel Ángel López-Vázquez
- Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C3, Ciudad Universitaria, Francisco J. Múgica s/n, Col. Felicitas del Río, 58040, Morelia, Michoacán, México
- Laboratorio de Neuroplasticidad de los procesos cognoscitivos, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Exhacienda de San José de la Huerta, 58341, Morelia, Michoacán, México
| | - Miguel Cervantes
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Rafael Carrillo esquina con Salvador González Herrejón s/n, Col. Centro, 58000, Morelia, Michoacán, México
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex hacienda de San José de la Huerta, 58341, Morelia, Michoacán, México.
| |
Collapse
|