1
|
Weiss J, Zufall F. Presynaptic GABA B receptors inhibit vomeronasal nerve transmission to accessory olfactory bulb mitral cells. Front Cell Neurosci 2023; 17:1302955. [PMID: 38130867 PMCID: PMC10733964 DOI: 10.3389/fncel.2023.1302955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Vomeronasal sensory neurons (VSNs) recognize pheromonal and kairomonal semiochemicals in the lumen of the vomeronasal organ. VSNs send their axons along the vomeronasal nerve (VN) into multiple glomeruli of the accessory olfactory bulb (AOB) and form glutamatergic synapses with apical dendrites of mitral cells, the projection neurons of the AOB. Juxtaglomerular interneurons release the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Besides ionotropic GABA receptors, the metabotropic GABAB receptor has been shown to modulate synaptic transmission in the main olfactory system. Here we show that GABAB receptors are expressed in the AOB and are primarily located at VN terminals. Electrical stimulation of the VN provokes calcium elevations in VSN nerve terminals, and activation of GABAB receptors by the agonist baclofen abolishes calcium influx in AOB slice preparations. Patch clamp recordings reveal that synaptic transmission from the VN to mitral cells can be completely suppressed by activation of GABAB receptors. A potent GABAB receptor antagonist, CGP 52432, reversed the baclofen-induced effects. These results indicate that modulation of VSNs via activation of GABAB receptors affects calcium influx and glutamate release at presynaptic terminals and likely balances synaptic transmission at the first synapse of the accessory olfactory system.
Collapse
Affiliation(s)
- Jan Weiss
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | | |
Collapse
|
2
|
Mier Quesada Z, Portillo W, Paredes RG. Behavioral evidence of the functional interaction between the main and accessory olfactory system suggests a large olfactory system with a high plastic capability. Front Neuroanat 2023; 17:1211644. [PMID: 37908970 PMCID: PMC10613685 DOI: 10.3389/fnana.2023.1211644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Olfaction is fundamental in many species of mammals. In rodents, the integrity of this system is required for the expression of parental and sexual behavior, mate recognition, identification of predators, and finding food. Different anatomical and physiological evidence initially indicated the existence of two anatomically distinct chemosensory systems: The main olfactory system (MOS) and the accessory olfactory system (AOS). It was originally conceived that the MOS detected volatile odorants related to food, giving the animal information about the environment. The AOS, on the other hand, detected non-volatile sexually relevant olfactory cues that influence reproductive behaviors and neuroendocrine functions such as intermale aggression, sexual preference, maternal aggression, pregnancy block (Bruce effect), puberty acceleration (Vandenbergh effect), induction of estrous (Whitten effect) and sexual behavior. Over the last decade, several lines of evidence have demonstrated that although these systems could be anatomically separated, there are neuronal areas in which they are interconnected. Moreover, it is now clear that both the MOS and the AOS process both volatile and no-volatile odorants, indicating that they are also functionally interconnected. In the first part of the review, we will describe the behavioral evidence. In the second part, we will summarize data from our laboratory and other research groups demonstrating that sexual behavior in male and female rodents induces the formation of new neurons that reach the main and accessory olfactory bulbs from the subventricular zone. Three factors are essential for the neurons to reach the AOS and the MOS: The stimulation frequency, the stimulus's temporal presentation, and the release of opioids induced by sexual behavior. We propose that the AOS and the MOS are part of a large olfactory system with a high plastic capability, which favors the adaptation of species to different environmental signals.
Collapse
Affiliation(s)
- Zacnite Mier Quesada
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Raúl G. Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
3
|
Pardo-Bellver C, Vila-Martin ME, Martínez-Bellver S, Villafranca-Faus M, Teruel-Sanchis A, Savarelli-Balsamo CA, Drabik SM, Martínez-Ricós J, Cervera-Ferri A, Martínez-García F, Lanuza E, Teruel-Martí V. Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice. Front Neuroanat 2022; 16:988015. [PMID: 36120099 PMCID: PMC9479637 DOI: 10.3389/fnana.2022.988015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Rodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo–amygdalar network in freely behaving female mice exploring neutral or conspecific stimuli. We hypothesize that processing conspecifics stimuli requires both chemosensory systems, and thus our results will show shared patterns of activity in olfactory and vomeronasal structures. Were the hypothesis not true, the activity of the vomeronasal structures would be independent of that of the main olfactory system. In the c-Fos analysis, we assessed the activation elicited by neutral olfactory or male stimuli in a broader network. Male urine induced a significantly higher activity in the vomeronasal system compared to that induced by a neutral odorant. Concerning the olfactory system, only the cortex–amygdala transition area showed significant activation. No differential c-Fos expression was found in the reward system and the basolateral amygdala. These functional patterns in the chemosensory circuitry reveal a strong top-down control of the amygdala over both olfactory bulbs, suggesting an active role of the amygdala in the integration of chemosensory information directing the activity of the bulbs during environmental exploration.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - Manuel E. Vila-Martin
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Martínez-Bellver
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Villafranca-Faus
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Anna Teruel-Sanchis
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Camila A. Savarelli-Balsamo
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sylwia M. Drabik
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Joana Martínez-Ricós
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Fernando Martínez-García
- Faculty of Health Sciences, Pre-Departmental Unit of Medicine, Jaume I University, Castellón de la Plana, Spain
| | - Enrique Lanuza
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- *Correspondence: Enrique Lanuza,
| | - Vicent Teruel-Martí
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Vicent Teruel-Martí,
| |
Collapse
|
4
|
Amyloid Beta Alters Prefrontal-dependent Functions Along with its Excitability and Synaptic Plasticity in Male Rats. Neuroscience 2022; 498:260-279. [PMID: 35839923 DOI: 10.1016/j.neuroscience.2022.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022]
Abstract
Prefrontal cortex (PFC)-related functions, such as working memory (WM) and cognitive flexibility (CF), are among the first to be altered at early stages of Alzheimer's disease (AD). Likewise, transgenic AD models carrying different AD-related mutations, mostly linked to the overproduction of amyloid beta (Aβ) and other peptides, show premature behavioral and functional symptoms associated with PFC alterations. However, little is known about the effects of intracerebral or intra-PFC Aβ infusion on WM and CF, as well as on pyramidal cell excitability and plasticity. Thus, here we evaluated the effects of a single Aβ injection, directly into the PFC, or its intracerebroventricular (icv) application, on PFC-dependent behaviors and on the intrinsic and synaptic properties of layer V pyramidal neurons in PFC slices. We found that a single icv Aβ infusion reduced learning and performance of a delayed non-matching-to-sample WM task and prevented reversal learning in a matching-to-sample version of the task, several weeks after its infusion. The inhibition of WM performance was reproduced more potently by a single PFC Aβ infusion and was associated with Aβ accumulation. This behavioral disruption was related to increased layer V pyramidal cell firing, larger sag membrane potential, increased fast after-hyperpolarization and a failure to sustain synaptic long-term potentiation, even leading to long-term depression, at both the hippocampal-PFC pathway and intracortical synapses. These findings show that Aβ can affect PFC excitability and synaptic plasticity balance, damaging PFC-dependent functions, which could constitute the foundations of the early alterations in executive functions in AD patients.
Collapse
|
5
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
6
|
Suyama H, Egger V, Lukas M. Top-down acetylcholine signaling via olfactory bulb vasopressin cells contributes to social discrimination in rats. Commun Biol 2021; 4:603. [PMID: 34021245 PMCID: PMC8140101 DOI: 10.1038/s42003-021-02129-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/19/2021] [Indexed: 02/04/2023] Open
Abstract
Social discrimination in rats requires activation of the intrinsic bulbar vasopressin system, but it is unclear how this system comes into operation, as olfactory nerve stimulation primarily inhibits bulbar vasopressin cells (VPCs). Here we show that stimulation with a conspecific can activate bulbar VPCs, indicating that VPC activation depends on more than olfactory cues during social interaction. A series of in vitro electrophysiology, pharmacology and immunohistochemistry experiments implies that acetylcholine, probably originating from centrifugal projections, can enable olfactory nerve-evoked action potentials in VPCs. Finally, cholinergic activation of the vasopressin system contributes to vasopressin-dependent social discrimination, since recognition of a known rat was blocked by bulbar infusion of the muscarinic acetylcholine receptor antagonist atropine and rescued by additional bulbar application of vasopressin. Thus, our results implicate that top-down cholinergic modulation of bulbar VPC activity is involved in social discrimination in rats.
Collapse
Affiliation(s)
- Hajime Suyama
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Veronica Egger
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Michael Lukas
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Zheng N, Wang ZZ, Wang SW, Yang FJ, Zhu XT, Lu C, Manyande A, Rao XP, Xu FQ. Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb. Zool Res 2020; 41:148-156. [PMID: 31945810 PMCID: PMC7109009 DOI: 10.24272/j.issn.2095-8137.2020.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The accessory olfactory bulb (AOB), located at the posterior dorsal aspect of the main olfactory bulb (MOB), is the first brain relay of the accessory olfactory system (AOS), which can parallelly detect and process volatile and nonvolatile social chemosignals and mediate different sexual and social behaviors with the main olfactory system (MOS). However, due to its anatomical location and absence of specific markers, there is a lack of research on the internal and external neural circuits of the AOB. This issue was addressed by single-color labeling and fluorescent double labeling using retrograde rAAVs injected into the bed nucleus of the stria terminalis (BST), anterior cortical amygdalar area (ACo), medial amygdaloid nucleus (MeA), and posteromedial cortical amygdaloid area (PMCo) in mice. We demonstrated the effectiveness of this AOB projection neuron labeling method and showed that the mitral cells of the AOB exhibited efferent projection dispersion characteristics similar to those of the MOB. Moreover, there were significant differences in the number of neurons projected to different brain regions, which indicated that each mitral cell in the AOB could project to a different number of neurons in different cortices. These results provide a circuitry basis to help understand the mechanism by which pheromone information is encoded and decoded in the AOS.
Collapse
Affiliation(s)
- Ning Zheng
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Zhong Wang
- Department of Automation, School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Song-Wei Wang
- Department of Automation, School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fang-Jia Yang
- School of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Xu-Tao Zhu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Chen Lu
- School of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW89GA, UK
| | - Xiao-Ping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China. E-mail:
| | - Fu-Qiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,Divisions of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430074, China. E-mail:
| |
Collapse
|
8
|
Synchronous Infra-Slow Oscillations Organize Ensembles of Accessory Olfactory Bulb Projection Neurons into Distinct Microcircuits. J Neurosci 2020; 40:4203-4218. [PMID: 32312886 PMCID: PMC7244196 DOI: 10.1523/jneurosci.2925-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo. We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity. SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo. Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.
Collapse
|
9
|
Lukas M, Suyama H, Egger V. Vasopressin Cells in the Rodent Olfactory Bulb Resemble Non-Bursting Superficial Tufted Cells and Are Primarily Inhibited upon Olfactory Nerve Stimulation. eNeuro 2019; 6:ENEURO.0431-18.2019. [PMID: 31217196 PMCID: PMC6620393 DOI: 10.1523/eneuro.0431-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 01/09/2023] Open
Abstract
The intrinsic vasopressin system of the olfactory bulb is involved in social odor processing and consists of glutamatergic vasopressin cells (VPCs) located at the medial border of the glomerular layer. To characterize VPCs in detail, we combined various electrophysiological, neuroanatomical, and two-photon Ca2+ imaging techniques in acute bulb slices from juvenile transgenic rats with eGFP-labeled VPCs. VPCs showed regular non-bursting firing patterns, and displayed slower membrane time constants and higher input resistances versus other glutamatergic tufted cell types. VPC axons spread deeply into the external plexiform and superficial granule cell layer (GCL). Axonal projections fell into two subclasses, with either denser local columnar collaterals or longer-ranging single projections running laterally within the internal plexiform layer and deeper within the granule cell layer. VPCs always featured lateral dendrites and a tortuous apical dendrite that innervated a single glomerulus with a homogenously branching tuft. These tufts lacked Ca2+ transients in response to single somatically-evoked action potentials and showed a moderate Ca2+ increase upon prolonged action potential trains.Notably, electrical olfactory nerve stimulation did not result in synaptic excitation of VPCs, but triggered substantial GABAA receptor-mediated IPSPs that masked excitatory barrages with yet longer latency. Exogenous vasopressin application reduced those IPSPs, as well as olfactory nerve-evoked EPSPs recorded from external tufted cells. In summary, VPCs can be classified as non-bursting, vertical superficial tufted cells. Moreover, our findings imply that sensory input alone cannot trigger excitation of VPCs, arguing for specific additional pathways for excitation or disinhibition in social contexts.
Collapse
Affiliation(s)
- Michael Lukas
- Institute of Zoology, Neurophysiology, University of Regensburg, 93040 Regensburg, Germany
| | - Hajime Suyama
- Institute of Zoology, Neurophysiology, University of Regensburg, 93040 Regensburg, Germany
| | - Veronica Egger
- Institute of Zoology, Neurophysiology, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
10
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Le Moëne O, Ågmo A. The neuroendocrinology of sexual attraction. Front Neuroendocrinol 2018; 51:46-67. [PMID: 29288076 DOI: 10.1016/j.yfrne.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 01/23/2023]
Abstract
Sexual attraction has two components: Emission of sexually attractive stimuli and responsiveness to these stimuli. In rodents, olfactory stimuli are necessary but not sufficient for attraction. We argue that body odors are far superior to odors from excreta (urine, feces) as sexual attractants. Body odors are produced by sebaceous glands all over the body surface and in specialized glands. In primates, visual stimuli, for example the sexual skin, are more important than olfactory. The role of gonadal hormones for the production of and responsiveness to odorants is well established. Both the androgen and the estrogen receptor α are important in male as well as in female rodents. Also in primates, gonadal hormones are necessary for the responsiveness to sexual attractants. In males, the androgen receptor is sufficient for sustaining responsiveness. In female non-human primates, estrogens are needed, whereas androgens seem to contribute to responsiveness in women.
Collapse
Affiliation(s)
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
12
|
Peña-Ortega F. Neural Network Reconfigurations: Changes of the Respiratory Network by Hypoxia as an Example. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1015:217-237. [PMID: 29080029 DOI: 10.1007/978-3-319-62817-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural networks, including the respiratory network, can undergo a reconfiguration process by just changing the number, the connectivity or the activity of their elements. Those elements can be either brain regions or neurons, which constitute the building blocks of macrocircuits and microcircuits, respectively. The reconfiguration processes can also involve changes in the number of connections and/or the strength between the elements of the network. These changes allow neural networks to acquire different topologies to perform a variety of functions or change their responses as a consequence of physiological or pathological conditions. Thus, neural networks are not hardwired entities, but they constitute flexible circuits that can be constantly reconfigured in response to a variety of stimuli. Here, we are going to review several examples of these processes with special emphasis on the reconfiguration of the respiratory rhythm generator in response to different patterns of hypoxia, which can lead to changes in respiratory patterns or lasting changes in frequency and/or amplitude.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
13
|
Vargas-Barroso V, Peña-Ortega F, Larriva-Sahd JA. Olfaction and Pheromones: Uncanonical Sensory Influences and Bulbar Interactions. Front Neuroanat 2017; 11:108. [PMID: 29187814 PMCID: PMC5695156 DOI: 10.3389/fnana.2017.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023] Open
Abstract
The rodent main and accessory olfactory systems (AOS) are considered functionally and anatomically segregated information-processing pathways. Each system is devoted to the detection of volatile odorants and pheromones, respectively. However, a growing number of evidences supports a cooperative interaction between them. For instance, at least four non-canonical receptor families (i.e., different from olfactory and vomeronasal receptor families) have been recently discovered. These atypical receptor families are expressed in the sensory organs of the nasal cavity and furnish parallel processing-pathways that detect specific stimuli and mediate specific behaviors as well. Aside from the receptor and functional diversity of these sensory modalities, they converge into a poorly understood bulbar area at the intersection of the main- main olfactory bulb (MOB) and accessory olfactory bulb (AOB) that has been termed olfactory limbus (OL). Given the intimate association the OL with specialized glomeruli (i.e., necklace and modified glomeruli) receiving uncanonical sensory afferences and its interactions with the MOB and AOB, the possibility that OL is a site of non-olfactory and atypical vomeronasal sensory decoding is discussed.
Collapse
Affiliation(s)
- Víctor Vargas-Barroso
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Jorge A Larriva-Sahd
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
14
|
Pardo-Bellver C, Martínez-Bellver S, Martínez-García F, Lanuza E, Teruel-Martí V. Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice. Sci Rep 2017; 7:9924. [PMID: 28855563 PMCID: PMC5577179 DOI: 10.1038/s41598-017-10089-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Chemosensory processing in mammals involves the olfactory and vomeronasal systems, but how the activity of both circuits is integrated is unknown. In our study, we recorded the electrophysiological activity in the olfactory bulbs and the vomeronasal amygdala in freely behaving mice exploring a battery of neutral and conspecific stimuli. The exploration of stimuli, including a neutral stimulus, induced synchronic activity in the olfactory bulbs characterized by a dominant theta rhythmicity, with specific theta-gamma coupling, distinguishing between vomeronasal and olfactory structures. The correlated activation of the bulbs suggests a coupling between the stimuli internalization in the nasal cavity and the vomeronasal pumping. In the amygdala, male stimuli are preferentially processed in the medial nucleus, whereas female cues induced a differential response in the posteromedial cortical amygdala. Thus, particular theta-gamma patterns in the olfactory network modulates the integration of chemosensory information in the amygdala, allowing the selection of an appropriate behaviour.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Department of de Biologia Cellular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, Spain.,Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain
| | - Sergio Martínez-Bellver
- Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain
| | - Fernando Martínez-García
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I. Castelló de la Plana, Castelló, Spain
| | - Enrique Lanuza
- Department of de Biologia Cellular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, Spain
| | - Vicent Teruel-Martí
- Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain.
| |
Collapse
|
15
|
Marking S, Krosnowski K, Ogura T, Lin W. Dichotomous Distribution of Putative Cholinergic Interneurons in Mouse Accessory Olfactory Bulb. Front Neuroanat 2017; 11:10. [PMID: 28289379 PMCID: PMC5326757 DOI: 10.3389/fnana.2017.00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 01/14/2023] Open
Abstract
Sensory information processing in the olfactory bulb (OB) relies on diverse populations of bulbar interneurons. In rodents, the accessory OB (AOB) is divided into two bulbar regions, the anterior (aAOB) and posterior (pAOB), which differ substantially in their circuitry connections and associated behaviors. We previously identified and characterized a large number of morphologically diverse cholinergic interneurons in the main OB (MOB) using transgenic mice to visualize the cell bodies of choline acetyltransferase (ChAT-expressing neurons and immunolabeling (Krosnowski et al., 2012)). However, whether there are cholinergic neurons in the AOB is controversial and there is no detailed characterization of such neurons. Using the same line of ChAT(bacterial artificial chromosome, BAC)-enhanced green fluorescent protein (eGFP) transgenic mice, we investigated cholinergic neurons in the AOB. We found significant differences in the number and location of GFP-expressing (GFP+), putative cholinergic interneurons between the aAOB and pAOB. The highest numbers of GFP+ interneurons were found in the aAOB glomerular layer (aGL) and pAOB mitral/tufted cell layer (pMCL). We also noted a high density of GFP+ interneurons encircling the border region of the pMCL. Interestingly, a small subset of glomeruli in the middle of the GL receives strong MCL GFP+ nerve processes. These local putative cholinergic-innervated glomeruli are situated just outside the aGL, setting the boundary between the pGL and aGL. Many but not all GFP+ neurons in the AOB were weakly labeled with antibodies against ChAT and vesicular acetylcholine transporter (VAChT). We further determined if these GFP+ interneurons differ from other previously characterized interneuron populations in the AOB and found that AOB GFP+ interneurons express neither GABAergic nor dopaminergic markers and most also do not express the glutamatergic marker. Similar to the cholinergic interneurons of the MOB, some AOB GFP+ interneurons express the calcium binding protein, calbindin-D28K. Moreover, exposure to either a male intruder or soiled bedding from a mating cage leads to an increase in the number of c-Fos-expressing MCL GFP+ neurons. Taken together, our data reveal a population of largely unidentified putative cholinergic neurons in the AOB. Their dichotomous distribution in the aAOB and pAOB suggests region-specific cholinergic involvement in olfactory information processing.
Collapse
Affiliation(s)
- Sarah Marking
- Department of Biological Sciences, University of Maryland, Baltimore County Baltimore, MD, USA
| | - Kurt Krosnowski
- Department of Biological Sciences, University of Maryland, Baltimore County Baltimore, MD, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland, Baltimore County Baltimore, MD, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County Baltimore, MD, USA
| |
Collapse
|
16
|
Synchronous Infra-Slow Bursting in the Mouse Accessory Olfactory Bulb Emerge from Interplay between Intrinsic Neuronal Dynamics and Network Connectivity. J Neurosci 2017; 37:2656-2672. [PMID: 28148726 DOI: 10.1523/jneurosci.3107-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/21/2022] Open
Abstract
Rhythmic neuronal activity of multiple frequency bands has been described in many brain areas and attributed to numerous brain functions. Among these, little is known about the mechanism and role of infra-slow oscillations, which have been demonstrated recently in the mouse accessory olfactory bulb (AOB). Along with prolonged responses to stimuli and distinct network connectivity, they inexplicably affect the AOB processing of social relevant stimuli. Here, we show that assemblies of AOB mitral cells are synchronized by lateral interactions through chemical and electrical synapses. Using a network model, we demonstrate that the synchronous oscillations in these assemblies emerge from interplay between intrinsic membrane properties and network connectivity. As a consequence, the AOB network topology, in which each mitral cell receives input from multiple glomeruli, enables integration of chemosensory stimuli over extended time scales by interglomerular synchrony of infra-slow bursting. These results provide a possible functional significance for the distinct AOB physiology and topology. Beyond the AOB, this study presents a general model for synchronous infra-slow bursting in neuronal networks.SIGNIFICANCE STATEMENT Infra-slow rhythmic neuronal activity with a very long (>10 s) duration has been described in many brain areas, but little is known about the role of this activity and the mechanisms that produce it. Here, we combine experimental and computational methods to show that synchronous infra-slow bursting activity in mitral cells of the mouse accessory olfactory bulb (AOB) emerges from interplay between intracellular dynamics and network connectivity. In this novel mechanism, slow intracellular Na+ dynamics endow AOB mitral cells with a weak tendency to burst, which is further enhanced and stabilized by chemical and electrical synapses between them. Combined with the unique topology of the AOB network, infra-slow bursting enables integration and binding of multiple chemosensory stimuli over a prolonged time scale.
Collapse
|
17
|
Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input. INTERNATIONAL JOURNAL OF PEPTIDES 2017; 2017:7386809. [PMID: 28127312 PMCID: PMC5239987 DOI: 10.1155/2017/7386809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022]
Abstract
Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.
Collapse
|