1
|
Niu J, Jiang N. Pseudo-online detection and classification for upper-limb movements. J Neural Eng 2022; 19. [PMID: 35688127 DOI: 10.1088/1741-2552/ac77be] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/10/2022] [Indexed: 02/08/2023]
Abstract
Objective. This study analyzed detection (movement vs. non-movement) and classification (different types of movements) to decode upper-limb movement volitions in a pseudo-online fashion.Approach. Nine healthy subjects executed four self-initiated movements: left wrist extension, right wrist extension, left index finger extension, and right index finger extension. For detection, we investigated the performance of three individual classifiers (support vector machine (SVM), EEGNET, and Riemannian geometry featured SVM) on three frequency bands (0.05-5 Hz, 5-40 Hz, 0.05-40 Hz). The best frequency band and the best classifier combinations were constructed to realize an ensemble processing pipeline using majority voting. For classification, we used adaptive boosted Riemannian geometry model to differentiate contra-lateral and ipsilateral movements.Main results. The ensemble model achieved 79.6 ± 8.8% true positive rate and 3.1 ± 1.2 false positives per minute with 75.3 ± 112.6 ms latency on a pseudo-online detection task. The following classification gave around 67% accuracy to differentiate contralateral movements.Significance. The newly proposed ensemble method and pseudo-online testing procedure could provide a robust brain-computer interface design for movement decoding.
Collapse
Affiliation(s)
- Jiansheng Niu
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ning Jiang
- National Clinical Research Center for Geriatric, West China Hospital Sichuan University, Chengdu, Sichuan, People's Republic of China.,Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Kiang L, Woodington B, Carnicer-Lombarte A, Malliaras G, Barone DG. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng 2022; 19. [PMID: 35320780 DOI: 10.1088/1741-2552/ac605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bioelectronic stimulation of the spinal cord has demonstrated significant progress in restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow SCR to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.
Collapse
Affiliation(s)
- Lei Kiang
- Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore, 169608, SINGAPORE
| | - Ben Woodington
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Alejandro Carnicer-Lombarte
- Clinical Neurosciences, University of Cambridge, Bioelectronics Laboratory, Cambridge, CB2 0PY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - George Malliaras
- University of Cambridge, University of Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Damiano G Barone
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
3
|
Influential Factors of an Asynchronous BCI for Movement Intention Detection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2020:8573754. [PMID: 32273902 PMCID: PMC7125445 DOI: 10.1155/2020/8573754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 11/17/2022]
Abstract
In recent years, asynchronous brain computer interface (BCI) systems have been utilized in many domains such as robot controlling, assistive technology, and rehabilitation. In such BCI systems, movement intention detection algorithms are used to detect movement desires. In recent years, movement-related cortical potential (MRCP), an electroencephalogram (EEG) pattern representing voluntary movement intention, attracts wide attention in movement intention detection. Unfortunately, low MRCP detection accuracy makes the asynchronous BCI system impractical for real usage. In order to develop an effective MRCP detection algorithm, EEG data have to be properly preprocessed. In this work, we investigate the relationship and effects of three factors including frequency bands, spatial filters, and classifiers on MRCP classification performance to determine best settings. In particular, we performed a systematic performance investigation on combinations of five frequency bands, five spatial filters, and six classifiers. The EEG data were acquired from subjects performing series of self-paced ankle dorsiflexions. Analysis of variance (ANOVA) statistical test was performed on F1 scores to investigate effects of these three factors. The results show that frequency bands and spatial filters depend on each other. The combinations directly affect the F1 scores, so they have to be chosen carefully. The results can be used as guidelines for BCI researchers to effectively design a preprocessing method for an advanced asynchronous BCI system, which can assist the stroke rehabilitation.
Collapse
|
4
|
Abstract
A brain–computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance.
Collapse
|
5
|
Hong J, Qin X, Li J, Niu J, Wang W. Signal processing algorithms for motor imagery brain-computer interface: State of the art. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018. [DOI: 10.3233/jifs-181309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jie Hong
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Xiansheng Qin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Jing Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Junlong Niu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Wenjie Wang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
6
|
Mishchenko Y, Kaya M, Ozbay E, Yanar H. Developing a Three- to Six-State EEG-Based Brain-Computer Interface for a Virtual Robotic Manipulator Control. IEEE Trans Biomed Eng 2018; 66:977-987. [PMID: 30130168 DOI: 10.1109/tbme.2018.2865941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We develop an electroencephalography (EEG)-based noninvasive brain-computer interface (BCI) system having short training time (15 min) that can be applied for high-performance control of robotic prosthetic systems. METHODS A signal processing system for detecting user's mental intent from EEG data based on up to six-state BCI paradigm is developed and used. RESULTS We examine the performance of the developed system on experimental data collected from 12 healthy participants and analyzed offline. Out of 12 participants 3 achieve an accuracy of six-state communication in 80%-90% range, while 2 participants do not achieve a satisfactory accuracy. We further implement an online BCI system for control of a virtual 3 degree-of-freedom (dof) prosthetic manipulator and test it with our three best participants. Two participants are able to successfully complete 100% of the test tasks, demonstrating on average the accuracy rate of 80% and requiring 5-10 s to execute a manipulator move. One participant failed to demonstrate a satisfactory performance in online trials. CONCLUSION We show that our offline EEG BCI system can correctly identify different motor imageries in EEG data with high accuracy and our online BCI system can be used for control of a virtual 3 dof prosthetic manipulator. SIGNIFICANCE Our results prepare foundation for further development of higher performance EEG BCI-based robotic assistive systems and demonstrate that EEG-based BCI may be feasible for robotic control by paralyzed and immobilized individuals.
Collapse
|
7
|
Liu D, Chen W, Lee K, Chavarriaga R, Iwane F, Bouri M, Pei Z, Millan JDR. EEG-Based Lower-Limb Movement Onset Decoding: Continuous Classification and Asynchronous Detection. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1626-1635. [PMID: 30004882 DOI: 10.1109/tnsre.2018.2855053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain-machine interfaces have been used to incorporate the user intention to trigger robotic devices by decoding movement onset from electroencephalography. Active neural participation is crucial to promote brain plasticity thus to enhance the opportunity of motor recovery. This paper presents the decoding of lower-limb movement-related cortical potentials with continuous classification and asynchronous detection. We executed experiments in a customized gait trainer, where 10 healthy subjects performed self-initiated ankle plantar flexion. We further analyzed the features, evaluated the impact of the limb side, and compared the proposed framework with other typical decoding methods. No significant differences were observed between the left and right legs in terms of neural signatures of movement and classification performance. We obtained a higher true positive rate, lower false positives, and comparable latencies with respect to the existing online detection methods. This paper demonstrates the feasibility of the proposed framework to build a closed-loop gait trainer. Potential applications include gait training neurorehabilitation in clinical trials.
Collapse
|
8
|
Lisi G, Rivela D, Takai A, Morimoto J. Markov Switching Model for Quick Detection of Event Related Desynchronization in EEG. Front Neurosci 2018; 12:24. [PMID: 29449799 PMCID: PMC5799229 DOI: 10.3389/fnins.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/12/2018] [Indexed: 11/15/2022] Open
Abstract
Quick detection of motor intentions is critical in order to minimize the time required to activate a neuroprosthesis. We propose a Markov Switching Model (MSM) to achieve quick detection of an event related desynchronization (ERD) elicited by motor imagery (MI) and recorded by electroencephalography (EEG). Conventional brain computer interfaces (BCI) rely on sliding window classifiers in order to perform online continuous classification of the rest vs. MI classes. Based on this approach, the detection of abrupt changes in the sensorimotor power suffers from an intrinsic delay caused by the necessity of computing an estimate of variance across several tenths of a second. Here we propose to avoid explicitly computing the EEG signal variance, and estimate the ERD state directly from the voltage information, in order to reduce the detection latency. This is achieved by using a model suitable in situations characterized by abrupt changes of state, the MSM. In our implementation, the model takes the form of a Gaussian observation model whose variance is governed by two latent discrete states with Markovian dynamics. Its objective is to estimate the brain state (i.e., rest vs. ERD) given the EEG voltage, spatially filtered by common spatial pattern (CSP), as observation. The two variances associated with the two latent states are calibrated using the variance of the CSP projection during rest and MI, respectively. The transition matrix of the latent states is optimized by the “quickest detection” strategy that minimizes a cost function of detection latency and false positive rate. Data collected by a dry EEG system from 50 healthy subjects, was used to assess performance and compare the MSM with several logistic regression classifiers of different sliding window lengths. As a result, the MSM achieves a significantly better tradeoff between latency, false positive and true positive rates. The proposed model could be used to achieve a more reactive and stable control of a neuroprosthesis. This is a desirable property in BCI-based neurorehabilitation, where proprioceptive feedback is provided based on the patient's brain signal. Indeed, it is hypothesized that simultaneous contingent association between brain signals and proprioceptive feedback induces superior associative learning.
Collapse
Affiliation(s)
- Giuseppe Lisi
- ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, Kyoto, Japan
| | - Diletta Rivela
- ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, Kyoto, Japan
| | - Asuka Takai
- ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, Kyoto, Japan
| | - Jun Morimoto
- ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, Kyoto, Japan
| |
Collapse
|
9
|
Schalk G, Allison BZ. Noninvasive Brain–Computer Interfaces. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Liu D, Chen W, Chavarriaga R, Pei Z, Millán JDR. Decoding of Self-paced Lower-Limb Movement Intention: A Case Study on the Influence Factors. Front Hum Neurosci 2017; 11:560. [PMID: 29218004 PMCID: PMC5703734 DOI: 10.3389/fnhum.2017.00560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
Brain-machine interfaces (BMIs) have been applied as new rehabilitation tools for motor disabled individuals. Active involvement of cerebral activity has been shown to enhance neuroplasticity and thus to restore mobility. Various studies have focused on the detection of upper-limb movement intention, while the fewer study has investigated the lower-limb movement intention decoding. This study presents a BMI to decode the self-paced lower-limb movement intention, with 10 healthy subjects participating in the experiment. We varied four influence factors including the movement type (dorsiflexion or plantar flexion), the limb side (left or right leg), the processing method (time-series analysis based on MRCP, i.e., movement-related cortical potential or frequency-domain estimation based on SMR, i.e., sensory motor rhythm) and the frequency band (e.g., delta, theta, mu, beta and MRCP band at [0.1 1] Hz), to estimate both single-trial and sample-based performance. Feature analysis was then conducted to show the discriminant power (DP) and brain modulations. The average detection latency was -0.334 ± 0.216 s in single-trial basis across all conditions. An average area under the curve (AUC) of 91.0 ± 3.5% and 68.2 ± 4.6% was obtained for the MRCP-based and SMR-based method in the classification, respectively. The best performance was yielded from plantar flexion with left leg using time-series analysis on the MRCP band. The feature analysis indicated a cross-subject consistency of DP with the MRCP-based method and subject-specific variance of DP with the SMR-based method. The results presented here might be further exploited in a rehabilitation scenario. The comprehensive factor analysis might be used to shed light on the design of an effective brain switch to trigger external robotic devices.
Collapse
Affiliation(s)
- Dong Liu
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China.,Defitech Chair in Brain-Machine Interface, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Weihai Chen
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Ricardo Chavarriaga
- Defitech Chair in Brain-Machine Interface, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Zhongcai Pei
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - José Del R Millán
- Defitech Chair in Brain-Machine Interface, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
11
|
Liu D, Chen W, Pei Z, Wang J. A brain-controlled lower-limb exoskeleton for human gait training. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:104302. [PMID: 29092520 DOI: 10.1063/1.5006461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.
Collapse
Affiliation(s)
- Dong Liu
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Weihai Chen
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Zhongcai Pei
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Jianhua Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
12
|
EEG neural correlates of goal-directed movement intention. Neuroimage 2017; 149:129-140. [PMID: 28131888 PMCID: PMC5387183 DOI: 10.1016/j.neuroimage.2017.01.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022] Open
Abstract
Using low-frequency time-domain electroencephalographic (EEG) signals we show, for the same type of upper limb movement, that goal-directed movements have different neural correlates than movements without a particular goal. In a reach-and-touch task, we explored the differences in the movement-related cortical potentials (MRCPs) between goal-directed and non-goal-directed movements. We evaluated if the detection of movement intention was influenced by the goal-directedness of the movement. In a single-trial classification procedure we found that classification accuracies are enhanced if there is a goal-directed movement in mind. Furthermore, by using the classifier patterns and estimating the corresponding brain sources, we show the importance of motor areas and the additional involvement of the posterior parietal lobule in the discrimination between goal-directed movements and non-goal-directed movements. We discuss next the potential contribution of our results on goal-directed movements to a more reliable brain-computer interface (BCI) control that facilitates recovery in spinal-cord injured or stroke end-users.
Collapse
|
13
|
Aliakbaryhosseinabadi S, Kostic V, Pavlovic A, Radovanovic S, Nlandu Kamavuako E, Jiang N, Petrini L, Dremstrup K, Farina D, Mrachacz-Kersting N. Influence of attention alternation on movement-related cortical potentials in healthy individuals and stroke patients. Clin Neurophysiol 2017; 128:165-175. [DOI: 10.1016/j.clinph.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 09/04/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022]
|
14
|
Chavarriaga R, Fried-Oken M, Kleih S, Lotte F, Scherer R. Heading for new shores! Overcoming pitfalls in BCI design. BRAIN-COMPUTER INTERFACES 2016; 4:60-73. [PMID: 29629393 DOI: 10.1080/2326263x.2016.1263916] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research in brain-computer interfaces has achieved impressive progress towards implementing assistive technologies for restoration or substitution of lost motor capabilities, as well as supporting technologies for able-bodied subjects. Notwithstanding this progress, effective translation of these interfaces from proof-of concept prototypes into reliable applications remains elusive. As a matter of fact, most of the current BCI systems cannot be used independently for long periods of time by their intended end-users. Multiple factors that impair achieving this goal have already been identified. However, it is not clear how do they affect the overall BCI performance or how they should be tackled. This is worsened by the publication bias where only positive results are disseminated, preventing the research community from learning from its errors. This paper is the result of a workshop held at the 6th International BCI meeting in Asilomar. We summarize here the discussion on concrete research avenues and guidelines that may help overcoming common pitfalls and make BCIs become a useful alternative communication device.
Collapse
Affiliation(s)
- Ricardo Chavarriaga
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Melanie Fried-Oken
- Oregon Health & Science University, Institute on Development and Disability, Portland, Oregon USA
| | - Sonja Kleih
- Institute of Psychology, University of Würzburg, Marcusstraße 9-11, Würzburg, 97070, Germany
| | - Fabien Lotte
- Inria Bordeaux Sud-Ouest/LaBRI, 200 avenue de la vieille tour, 33405, Talence cedex, France
| | - Reinhold Scherer
- Institute of Neural Engineering, BCI-Lab, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
| |
Collapse
|