1
|
Xhakaza NK, Nkomozepi P, Mbajiorgu EF. Boophone disticha attenuates five day repeated forced swim-induced stress and adult hippocampal neurogenesis impairment in male Balb/c mice. Anat Cell Biol 2023; 56:69-85. [PMID: 36267006 PMCID: PMC9989792 DOI: 10.5115/acb.22.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Depression is one of the most common neuropsychiatric disorders and is associated with dysfunction of the neuroendocrine system and alterations in specific brain proteins. Boophone disticha (BD) is an indigenous psychoactive bulb that belongs to the Amaryllidacae family, which is widely used in Southern Africa to treat depression, with scientific evidence of potent antidepressant-like effects. The present study examined the antidepressant effects of BD and its mechanisms of action by measuring some behavioural parameters in the elevated plus maze, brain content of corticosterone, brain derived neurotropic factor (BDNF), and neuroblast differentiation in the hippocampus of Balb/c mice exposed to the five day repeated forced swim stress (5d-RFSS). Male Balb/c mice were subjected to the 5d-RFSS protocol to induce depressive-like behaviour (decreased swimming, increased floating, decreased open arm entry, decreased time spent in the open arms and decreased head dips in the elevated plus maze test) and treated with distilled water, fluoxetine and BD. BD treatment (10 mg/kg/p.o for 3 weeks) significantly attenuated the 5d-RFSS-induced behavioural abnormalities and the elevated serum corticosterone levels observed in stressed mice. Additionally, 5d-RFSS exposure significantly decreased the number of neuroblasts in the hippocampus and BDNF levels in the brain of Balb/c mice, while fluoxetine and BD treatment attenuated these changes. The antidepressant effects of BD were comparable to those of fluoxetine, but unlike fluoxetine, BD did not show any anxiogenic effects, suggesting better pharmacological functions. In conclusion, our study shows that BD exerted antidepressant-like effects in 5d-RFSS mice, mediated in part by normalizing brain corticosterone and BDNF levels.
Collapse
Affiliation(s)
- Nkosiphendule Khuthazelani Xhakaza
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, School of Medicine, Sefako Magkatho Health Sciences University, Pretoria, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Ejekemi Felix Mbajiorgu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Mezheritskiy MI, Dyakonova VE. Direct and Inherited Epigenetic Changes in the Nervous System Caused by Intensive Locomotion: Possible Adaptive Significance. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
This review is devoted to the analysis of works that investigated the long-term effects of species-specific forms of intensive locomotion on the cognitive functions of animals and humans, which can be transmitted to the next generation. To date, the anxiolytic and cognitive-enhancing long-term effects of intensive locomotion have been demonstrated in humans, rodents, fish, insects, mollusks, and nematodes. In rodents, changes in the central nervous system caused by intense locomotion can be transmitted through the maternal and paternal line to the descendants of the first generation. These include reduced anxiety, improved spatial learning and memory, increased levels of brain neurotrophic factor and vascular endothelial growth factor in the hippocampus and frontal cortex. The shift of the balance of histone acetylation in the hippocampus of rodents towards hyperacetylation, and the balance of DNA methylation towards demethylation manifests itself both as a direct and as a first-generation inherited effect of motor activity. The question about the mechanisms that link locomotion with an increase in the plasticity of a genome in the brain of descendants remains poorly understood, and invertebrate model organisms can be an ideal object for its study. Currently, there is a lack of a theoretical model explaining why motor activity leads to long-term improvement of some cognitive functions that can be transmitted to the next generation and why such an influence could have appeared in evolution. The answer to these questions is not only of fundamental interest, but it is necessary for predicting therapeutic and possible side effects of motor activity in humans. In this regard, the article pays special attention to the review of ideas on the evolutionary aspects of the problem. We propose our own hypothesis, according to which the activating effect of intensive locomotion on the function of the nervous system could have been formed in evolution as a preadaptation to a possible entry into a new environment.
Collapse
|
3
|
Kasper P, Breuer S, Hoffmann T, Vohlen C, Janoschek R, Schmitz L, Appel S, Fink G, Hünseler C, Quaas A, Demir M, Lang S, Steffen HM, Martin A, Schramm C, Bürger M, Mahabir E, Goeser T, Dötsch J, Hucklenbruch-Rother E, Bae-Gartz I. Maternal Exercise Mediates Hepatic Metabolic Programming via Activation of AMPK-PGC1α Axis in the Offspring of Obese Mothers. Cells 2021; 10:1247. [PMID: 34069390 PMCID: PMC8158724 DOI: 10.3390/cells10051247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is associated with an increased risk of hepatic metabolic dysfunction for both mother and offspring and targeted interventions to address this growing metabolic disease burden are urgently needed. This study investigates whether maternal exercise (ME) could reverse the detrimental effects of hepatic metabolic dysfunction in obese dams and their offspring while focusing on the AMP-activated protein kinase (AMPK), representing a key regulator of hepatic metabolism. In a mouse model of maternal western-style-diet (WSD)-induced obesity, we established an exercise intervention of voluntary wheel-running before and during pregnancy and analyzed its effects on hepatic energy metabolism during developmental organ programming. ME prevented WSD-induced hepatic steatosis in obese dams by alterations of key hepatic metabolic processes, including activation of hepatic ß-oxidation and inhibition of lipogenesis following increased AMPK and peroxisome-proliferator-activated-receptor-γ-coactivator-1α (PGC-1α)-signaling. Offspring of exercised dams exhibited a comparable hepatic metabolic signature to their mothers with increased AMPK-PGC1α-activity and beneficial changes in hepatic lipid metabolism and were protected from WSD-induced adipose tissue accumulation and hepatic steatosis in later life. In conclusion, this study demonstrates that ME provides a promising strategy to improve the metabolic health of both obese mothers and their offspring and highlights AMPK as a potential metabolic target for therapeutic interventions.
Collapse
Affiliation(s)
- Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Thorben Hoffmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Christoph Hünseler
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Alexander Quaas
- Department of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany;
| | - Münevver Demir
- Charité Campus Mitte and Campus Virchow Clinic, Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, D-13353 Berlin, Germany;
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Anna Martin
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Christoph Schramm
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Martin Bürger
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, D-50937 Cologne, Germany;
| | - Tobias Goeser
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| |
Collapse
|
4
|
Yang Y, Lagisz M, Foo YZ, Noble DWA, Anwer H, Nakagawa S. Beneficial intergenerational effects of exercise on brain and cognition: a multilevel meta-analysis of mean and variance. Biol Rev Camb Philos Soc 2021; 96:1504-1527. [PMID: 33783115 DOI: 10.1111/brv.12712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Physical exercise not only helps to improve physical health but can also enhance brain development and cognition. Recent reports on parental (both maternal and paternal) effects raise the possibility that parental exercise may provide benefits to offspring through intergenerational inheritance. However, the general magnitude and consistency of parental exercise effects on offspring is still controversial. Additionally, empirical research has long overlooked an important aspect of exercise: its effects on variability in neurodevelopmental and cognitive traits. Here, we compiled data from 52 studies involving 4786 rodents (412 effect sizes) to quantify the intergenerational transmission of exercise effects on brain and cognition. Using a multilevel meta-analytic approach, we found that, overall, parental exercise showed a tendency for increasing their offspring's brain structure by 12.7% (albeit statistically non-significant) probably via significantly facilitating neurogenesis (16.5%). Such changes in neural anatomy go in hand with a significant 20.8% improvement in neurobehaviour (improved learning and memory, and reduced anxiety). Moreover, we found parental exercise significantly reduces inter-individual differences (i.e. reduced variance in the treatment group) in progeny's neurobehaviour by 10.2% (coefficient of variation ratio, lnCVR), suggesting the existence of an individual by intervention interaction. The positive effects of exercise are modulated by several covariates (i.e. moderators), such as the exercised parent's sex, offspring's sex, and age, mode of exercise, and exercise timing. In particular, parental forced exercise is more efficient than voluntary exercise at significantly improving offspring neurobehaviour (26.0%) and reducing its variability (14.2%). We observed larger effects when parental exercise started before pregnancy. However, exercising only during pregnancy also had positive effects. Mechanistically, exercise significantly upregulated brain-derived neurotrophic factor (BDNF) by 28.9%, vascular endothelial growth factor (VEGF) by 35.8%, and significantly decreased hippocampal DNA methylation by 3.5%, suggesting that brain growth factor cascades and epigenetic modifications can moderate the transmission of parental exercise effects. Collectively, by coupling mean with variance effects, our analyses draw a more integrated picture of the benefits that parental exercise has on offspring: not only does it improve offspring brain development and cognitive performance, but it also reduces inter-individual differences in cognition-related traits. We advocate that meta-analysis of variation together with the mean of a trait provides novel insights for old controversies as well as emerging new questions, opening up a new era for generating variance-based hypotheses.
Collapse
Affiliation(s)
- Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yong Zhi Foo
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel W A Noble
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Meireles ALF, Segabinazi E, Spindler C, Rabello T, Mega F, Salvalaggio GDS, Marcuzzo S. Strength training during pregnancy influences hippocampal plasticity but not body development in neonatal rats. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:279-286. [PMID: 34059573 PMCID: PMC8185255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To describe the effects of strength exercise practice during pregnancy on the offspring's development parameters: growth and motor performance, hippocampal neuroplasticity, and stress levels. METHODS Pregnant Wistar rats were divided into two groups: sedentary and exercised rats. Exercised pregnant rats were subjected to a strength training protocol (vertical ladder climbing) throughout the gestational period. Male offspring's body weight, length, and head size were evaluated during the neonatal period (postnatal days [P]2-P21), as well as motor milestones during P0-P8. At P8, a set of male pups were subjected to global hippocampal DNA methylation, hippocampal cell proliferation, and plasma corticosterone concentration. RESULTS Offspring from trained mothers presented a transient change in body morphometric evaluations, no differences in milestone assessments, enhancement of cell proliferation in the dentate gyrus of the hippocampus, and decreased global hippocampal DNA methylation compared with the offspring from sedentary mothers. Furthermore, strength training during pregnancy did not change the corticosterone concentration of exercised mothers and their offspring. CONCLUSIONS These data indicate that strength training can protect offspring's development and could impact positively on parameters linked to cognitive function. This study provides a greater understanding of the effects of strength exercise practiced during pregnancy on the offspring's health.
Collapse
Affiliation(s)
- André Luís Ferreira Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil,Corresponding author: André Luís Ferreira Meireles, Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil E-mail:
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christiano Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tailene Rabello
- Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Filipe Mega
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela dos Santos Salvalaggio
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Meireles ALF, Segabinazi E, Spindler C, Gasperini NF, Souza Dos Santos A, Pochmann D, Elsner VR, Marcuzzo S. Maternal resistance exercise promotes changes in neuroplastic and epigenetic marks of offspring's hippocampus during adult life. Physiol Behav 2020; 230:113306. [PMID: 33359430 DOI: 10.1016/j.physbeh.2020.113306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/01/2022]
Abstract
Studies indicate that gestational exercise practice positively impacts the offspring's cognition. Nevertheless, the influence of maternal resistance exercise, different periods of exercise practice, and the inter- and transgenerational effects involved in these responses are not known. This study sought to report the influence of the maternal practice of resistance exercise on offspring's cognitive function, exploring behavior, and neuroplastic and epigenetic marks in the hippocampus. Female Wistar rats were divided into four groups: sedentary (SS), exercised during pregnancy (SE), exercised before pregnancy (ES), and exercised before and during pregnancy (EE). Exercised rats were submitted to a resistance exercise protocol (vertical ladder climbing). Between postnatal days (P)81 and P85, male offspring were submitted to the Morris water maze test. At P85, the following analyses were performed in offspring's hippocampus: expression of IGF-1 and BrdU+ cells, global DNA methylation, H3/H4 acetylation, and HDAC2 amount. Only the offspring of SE mothers presented subtly better performance on learning and memory tasks, associated with lower HDAC2 amount. Offspring from ES mothers presented an overexpression of hippocampal neuroplastic marks (BrdU+ and IGF-1), as well as a decrease of DNA methylation and an increase in H4 acetylation. Offspring from EE mothers (continuously exercised) did not present modifications in plasticity or epigenetic parameters. This is the first study to observe the influence of maternal resistance exercise on offspring's brains. The findings provide evidence that offspring's hippocampus plasticity is influenced by exercise performed in isolated periods (pre- or gestationally) more than that performed continually.
Collapse
Affiliation(s)
- André Luís Ferreira Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christiano Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Felix Gasperini
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Bae-Gartz I, Kasper P, Großmann N, Breuer S, Janoschek R, Kretschmer T, Appel S, Schmitz L, Vohlen C, Quaas A, Schweiger MR, Grimm C, Fischer A, Ferrari N, Graf C, Frese CK, Lang S, Demir M, Schramm C, Fink G, Goeser T, Dötsch J, Hucklenbruch-Rother E. Maternal exercise conveys protection against NAFLD in the offspring via hepatic metabolic programming. Sci Rep 2020; 10:15424. [PMID: 32963289 PMCID: PMC7508970 DOI: 10.1038/s41598-020-72022-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR coactivator-1 alpha (PGC1α) signaling with reduced hepatic lipogenesis and increased hepatic β-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany.
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nora Großmann
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Michal R Schweiger
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | - Christina Grimm
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | | | - Nina Ferrari
- Cologne Center for Prevention in Childhood and Youth / Heart Center Cologne, University Hospital of Cologne, Cologne, Germany.,Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christine Graf
- Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christian K Frese
- Proteomics Core Facility, CECAD Research Center, University Hospital of Cologne, Cologne, Germany.,Max-Planck-Unit for the Science of Pathogens, Charité University Medicine Berlin, Berlin, Germany
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Schramm
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| |
Collapse
|
8
|
August PM, Hözer R, Rodrigues KS, Dos Santos BG, Maurmann RM, Scortegagna MC, Matté C. Effect of Maternal Exercise on Diet-induced Redox Imbalance in Hippocampus of Adult Offspring. Neuroscience 2020; 437:196-206. [PMID: 32387646 DOI: 10.1016/j.neuroscience.2020.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Physical exercise practice has been increasingly recommended in the prevention and treatment of chronic diseases, causing a positive effect from body weight/fat loss to improved cognitive function. Maternal exercise seems to induce the same positive lifelong adaptations to the offspring. We hypothesized that maternal exercise can prevent redox imbalance in adult offspring's hippocampus exposed to a high-fat diet (HFD). Female Wistar rats were divided into three groups before and during pregnancy: (1) sedentary, (2) swimming exercise, and (3) swimming exercise with overload. On 60 days of age, the male pups were divided into standard diet or HFD for one month, yielding normal and HFD subgroups for each maternal condition. Maternal interventions did not alter gestational parameters, birth outcomes, and offspring weight gain from weaning to 90 days of age. The HFD consumption increased body fat, which was not prevented by maternal exercise. Serum glucose levels were increased by HFD, an effect that was prevented by unload maternal exercise. In the hippocampus, both maternal exercise intensities could increase antioxidant defense. Hippocampal redox homeostasis was impaired by HFD, causing increased superoxide levels, which was prevented by exercise without load, while overload caused only a reduction of the effect. In summary, the practice of swimming exercise without overload during pregnancy seems to be more beneficial when evaluated in animal model, preventing HFD induced redox imbalance and increasing antioxidant defense while overload swimming exercise during pregnancy demonstrated a negative effect on offspring submitted to HFD consumption.
Collapse
Affiliation(s)
- P M August
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Régis Hözer
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - K S Rodrigues
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - B G Dos Santos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R M Maurmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M C Scortegagna
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas: Fisiologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Segabinazi E, Spindler C, Meireles ALFD, Piazza FV, Mega F, Salvalaggio GDS, Achaval M, Marcuzzo S. Effects of Maternal Physical Exercise on Global DNA Methylation and Hippocampal Plasticity of Rat Male Offspring. Neuroscience 2019; 418:218-230. [PMID: 31473277 DOI: 10.1016/j.neuroscience.2019.08.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Intrauterine exposure to exercise is beneficial to cognition of the offspring. Although it is advisable to start practicing physical exercise during pregnancy, it is probable that practitioners or sedentary women keep their previous habits during gestation. This study was designed to evaluate the effects of maternal aerobic exercise initiated before and maintained during gestation, or performed in these isolated periods, on cognition and plasticity in the hippocampus of offspring. Groups of male pups were categorized by the exposure of their mothers to: treadmill off (sedentary, SS), pregestational exercise (ES), gestational exercise (SE) or combined protocols (EE). Between postnatal day 20 (P20) and P23 the offspring received one daily 5-bromo-2'-deoxiuridine (BrdU) injection and, from P47 to P51, were evaluated by the Morris water maze task. At P53, hippocampal global DNA methylation, survival of progenitor cells (BrdU), Brain-derived Neurotrophic Factor (BDNF) and reelin levels were measured. The offspring from ES, SE and EE mothers demonstrated improved spatial learning compared to SS, but hippocampal DNA methylation was significantly modified only in the offspring from ES mothers. The offspring from ES and SE mothers presented higher number of BrdU+ and reelin+ hippocampal cells than EE and SS. No differences were observed in the BDNF levels among the groups. The maternal pregestational and gestational isolated exercise protocols showed similar effects for offspring plasticity and spatial cognitive ability, while the combined protocol simply improved their spatial learning. Interestingly, only pregestational exercise was able to induce plasticity in the offspring hippocampus associated with modulation of global DNA methylation.
Collapse
Affiliation(s)
- Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil.
| | - Christiano Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | - André Luís Ferreira de Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil.
| | - Francele Valente Piazza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | - Filipe Mega
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | - Gabriela Dos Santos Salvalaggio
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil.
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Exercise during pregnancy and its impact on mothers and offspring in humans and mice. J Dev Orig Health Dis 2017; 9:63-76. [DOI: 10.1017/s2040174417000617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise during pregnancy has beneficial effects on maternal and offspring’s health in humans and mice. The underlying mechanisms remain unclear. This comparative study aimed to determine the long-term effects of an exercise program on metabolism, weight gain, body composition and changes in hormones [insulin, leptin, brain-derived neurotrophic factor (BDNF)]. Pregnant women (n=34) and mouse dams (n=44) were subjected to an exercise program compared with matched controls (period I). Follow-up in the offspring was performed over 6 months in humans, corresponding to postnatal day (P) 21 in mice (period II). Half of the mouse offspring was challenged with a high-fat diet (HFD) for 6 weeks between P70 and P112 (period III). In period I, exercise during pregnancy led to 6% lower fat content, 40% lower leptin levels and an increase of 50% BDNF levels in humans compared with controls, which was not observed in mice. After period II in humans and mice, offspring body weight did not differ from that of the controls. Further differences were observed in period III. Offspring of exercising mouse dams had significantly lower fat mass and leptin levels compared with controls. In addition, at P112, BDNF levels in offspring were significantly higher from exercising mothers while this effect was completely blunted by HFD feeding. In this study, we found comparable effects on maternal and offspring’s weight gain in humans and mice but different effects in insulin, leptin and BDNF. The long-term potential protective effects of exercise on biomarkers should be examined in human studies.
Collapse
|