1
|
Vargas L, Musselman ED, Grill WM, Hu X. Asynchronous axonal firing patterns evoked via continuous subthreshold kilohertz stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/acc20f. [PMID: 36881885 PMCID: PMC10433012 DOI: 10.1088/1741-2552/acc20f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Objective.Transcutaneous electrical stimulation of peripheral nerves is a common technique to assist or rehabilitate impaired muscle activation. However, conventional stimulation paradigms activate nerve fibers synchronously with action potentials time-locked with stimulation pulses. Such synchronous activation limits fine control of muscle force due to synchronized force twitches. Accordingly, we developed a subthreshold high-frequency stimulation waveform with the goal of activating axons asynchronously.Approach.We evaluated our waveform experimentally and through model simulations. During the experiment, we delivered continuous subthreshold pulses at frequencies of 16.67, 12.5, or 10 kHz transcutaneously to the median and ulnar nerves. We obtained high-density electromyographic (EMG) signals and fingertip forces to quantify the axonal activation patterns. We used a conventional 30 Hz stimulation waveform and the associated voluntary muscle activation for comparison. We modeled stimulation of biophysically realistic myelinated mammalian axons using a simplified volume conductor model to solve for extracellular electric potentials. We compared the firing properties under kHz and conventional 30 Hz stimulation.Main results.EMG activity evoked by kHz stimulation showed high entropy values similar to voluntary EMG activity, indicating asynchronous axon firing activity. In contrast, we observed low entropy values in EMG evoked by conventional 30 Hz stimulation. The muscle forces evoked by kHz stimulation also showed more stable force profiles across repeated trials compared with 30 Hz stimulation. Our simulation results provide direct evidence of asynchronous firing patterns across a population of axons in response to kHz frequency stimulation, while 30 Hz stimulation elicited synchronized time-locked responses across the population.Significance.We demonstrate that the continuous subthreshold high-frequency stimulation waveform can elicit asynchronous axon firing patterns, which can lead to finer control of muscle forces.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| | - Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| | - Xiaogang Hu
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, United States of America
- Department of Kinesiology, Pennsylvania State University, University Park, PA, United States of America
- Department of Physical Medicine & Rehabilitation, Pennsylvania State Hershey College of Medicine, Hershey, PA, United States of America
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States of America
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
2
|
Thomas WM, Leber M, Crew J, Warren DJ. Evaluation of Pneumatic Insertion Stability of Utah Slanted Electrode Arrays in Rat Sciatic Nerve. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5099-5102. [PMID: 36086163 DOI: 10.1109/embc48229.2022.9871237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Utah Electrode Array (UEA) and its variants (e.g., the Utah Slanted Electrode Array, or USEA) have been prominent contributors to advances in the field of neural engineering over the past decade. The most common means of inserting UEA and USEA devices into neural tissue is pneumatic insertion performed by an insertion wand and a pneumatic controller. As design changes from the well-established standards occur to better suit specialized surgical applications, it becomes essential to verify that the alterations do not compromise the structural integrity of the device during insertion. This paper characterizes and demonstrates the reliability of specialized USEAs and insertion wands designed for auditory nerve implants following pneumatic insertion into a rat sciatic nerve. The results show that proposed changes in the USEA form factor and pneumatic insertion ergonomics do not compromise implant stability and device structural viability.
Collapse
|
3
|
Shin H, Hawari MA, Hu X. Activation of Superficial and Deep Finger Flexors Through Transcutaneous Nerve Stimulation. IEEE J Biomed Health Inform 2021; 25:2575-2582. [PMID: 33259310 DOI: 10.1109/jbhi.2020.3041669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Functional electrical stimulation (FES) is a common technique to elicit muscle contraction and help improve muscle strength. Traditional FES over the muscle belly typically only activates superficial muscle regions. In the case of hand FES, this prevents the activation of the deeper flexor muscles which control the distal finger joints. Here, we evaluated whether an alternative transcutaneous nerve-bundle stimulation approach can activate both superficial and deep extrinsic finger flexors using a high-density stimulation grid. METHODS Transverse ultrasound of the forearm muscles was used to obtain cross-sectional images of the underlying finger flexors during stimulated finger flexions and kinematically-matched voluntary motions. Finger kinematics were recorded, and an image registration method was used to capture the large deformation of the muscle regions during each flexion. This deformation was used as a surrogate measure of the contraction of muscle tissue, and the regions of expanding tissue can identify activated muscles. RESULTS The nerve-bundle stimulation elicited contractions in the superficial and deep finger flexors. Both separate and concurrent activation of these two muscles were observed. Joint kinematics of the fingers also matched the expected regions of muscle contractions. CONCLUSIONS Our results showed that the nerve-bundle stimulation technique can activate the deep extrinsic finger flexors, which are typically not accessible via traditional surface FES. SIGNIFICANCE Our nerve-bundle stimulation method enables us to produce the full range of motion of different joints necessary for various functional grasps, which could benefit future neuroprosthetic applications.
Collapse
|
4
|
Tsai SY, Schreiber JA, Adamczyk NS, Wu JY, Ton ST, Hofler RC, Walter JS, O'Brien TE, Kartje GL, Nockels RP. Improved Functional Outcome After Peripheral Nerve Stimulation of the Impaired Forelimb Post-stroke. Front Neurol 2021; 12:610434. [PMID: 33959086 PMCID: PMC8093517 DOI: 10.3389/fneur.2021.610434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions. There is no effective treatment to improve lost function except restoring blood flow within the first several hours. Rehabilitation strategies are widely used with limited success. The purpose of this study was to examine the effect of electrical stimulation on the impaired upper extremity to improve functional recovery after stroke. We developed a rodent model using an electrode cuff implant onto a single peripheral nerve (median nerve) of the paretic forelimb and applied daily electrical stimulation. The skilled forelimb reaching test was used to evaluate functional outcome after stroke and electrical stimulation. Anterograde axonal tracing from layer V pyramidal neurons with biotinylated dextran amine was done to evaluate the formation of new neuronal connections from the contralesional cortex to the deafferented spinal cord. Rats receiving electrical stimulation on the median nerve showed significant improvement in the skilled forelimb reaching test in comparison with stroke only and stroke with sham stimulation. Rats that received electrical stimulation also exhibited significant improvement in the latency to initiate adhesive removal from the impaired forelimb, indicating better sensory recovery. Furthermore, axonal tracing analysis showed a significant higher midline fiber crossing index in the cervical spinal cord of rats receiving electrical stimulation. Our results indicate that direct peripheral nerve stimulation leads to improved sensorimotor recovery in the stroke-impaired forelimb, and may be a useful approach to improve post-stroke deficits in human patients.
Collapse
Affiliation(s)
- Shih-Yen Tsai
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Jennifer A Schreiber
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States.,Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| | | | - Joanna Y Wu
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Son T Ton
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Ryan C Hofler
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| | - James S Walter
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Timothy E O'Brien
- Department of Mathematics and Statistics and Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, United States
| | - Gwendolyn L Kartje
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States.,Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Science Division, Chicago, IL, United States
| | - Russ P Nockels
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
5
|
Zheng Y, Hu X. Elicited upper limb motions through transcutaneous cervical spinal cord stimulation. J Neural Eng 2020; 17:036001. [DOI: 10.1088/1741-2552/ab8f6f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Ciancibello J, King K, Meghrazi MA, Padmanaban S, Levy T, Ramdeo R, Straka M, Bouton C. Closed-loop neuromuscular electrical stimulation using feedforward-feedback control and textile electrodes to regulate grasp force in quadriplegia. Bioelectron Med 2019; 5:19. [PMID: 32232108 PMCID: PMC7098255 DOI: 10.1186/s42234-019-0034-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Transcutaneous neuromuscular electrical stimulation is routinely used in physical rehabilitation and more recently in brain-computer interface applications for restoring movement in paralyzed limbs. Due to variable muscle responses to repeated or sustained stimulation, grasp force levels can change significantly over time. Here we develop and assess closed-loop methods to regulate individual finger forces to facilitate functional movement. We combined this approach with custom textile-based electrodes to form a light-weight, wearable device and evaluated in paralyzed study participants. METHODS A textile-based electrode sleeve was developed by the study team and Myant, Corp. (Toronto, ON, Canada) and evaluated in a study involving three able-body participants and two participants with quadriplegia. A feedforward-feedback control structure was designed and implemented to accurately maintain finger force levels in a quadriplegic study participant. RESULTS Individual finger flexion and extension movements, along with functional grasping, were evoked during neuromuscular electrical stimulation. Closed-loop control methods allowed accurate steady state performance (< 15% error) with a settling time of 0.67 s (SD = 0.42 s) for individual finger contact force in a participant with quadriplegia. CONCLUSIONS Textile-based electrodes were identified to be a feasible alternative to conventional electrodes and facilitated individual finger movement and functional grasping. Furthermore, closed-loop methods demonstrated accurate control of individual finger flexion force. This approach may be a viable solution for enabling grasp force regulation in quadriplegia. TRIAL REGISTRATION NCT, NCT03385005. Registered Dec. 28, 2017.
Collapse
Affiliation(s)
- John Ciancibello
- Feinstein Institute for Medical Research at Northwell Health, New York, USA
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, New York, USA
| | - Kevin King
- Feinstein Institute for Medical Research at Northwell Health, New York, USA
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, New York, USA
| | - Milad Alizadeh Meghrazi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
- Myant Corp, Toronto, ON Canada
| | - Subash Padmanaban
- Feinstein Institute for Medical Research at Northwell Health, New York, USA
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, New York, USA
| | - Todd Levy
- Feinstein Institute for Medical Research at Northwell Health, New York, USA
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, New York, USA
| | - Richard Ramdeo
- Feinstein Institute for Medical Research at Northwell Health, New York, USA
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, New York, USA
| | - Malgorzata Straka
- Feinstein Institute for Medical Research at Northwell Health, New York, USA
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, New York, USA
| | - Chad Bouton
- Feinstein Institute for Medical Research at Northwell Health, New York, USA
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, New York, USA
| |
Collapse
|
7
|
Zellmer ER, MacEwan MR, Moran DW. Modelling the impact of altered axonal morphometry on the response of regenerative nervous tissue to electrical stimulation through macro-sieve electrodes. J Neural Eng 2019; 15:026009. [PMID: 29192607 DOI: 10.1088/1741-2552/aa9e96] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). APPROACH A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. MAIN RESULTS Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. SIGNIFICANCE Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
Collapse
Affiliation(s)
- Erik R Zellmer
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
| | | | | |
Collapse
|
8
|
Shin H, Hu X. Flexibility of Finger Activation Patterns Elicited through Non-invasive Multi-Electrode Nerve Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1428-1431. [PMID: 30440660 DOI: 10.1109/embc.2018.8512479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inability to effectively activate and control skeletal muscles is a common impairment following a variety of neurological conditions or injuries. One common approach to restoring or augmenting this impairment is the use of external electrical stimulation of the muscles, called functional electrical stimulation (FES). Typically targeted directly at the anatomical muscle belly, existing methodologies often involve high current amplitudes, limited superficial muscle activation, and early onset of muscle fatigue. We have recently explored the capabilities of a non-invasive peripheral nerve stimulation method for the dexterous control of finger and hand muscles. Further development of our stimulation system has enabled us to manually search across a variety of stimulation locations with increased consistency and efficiency. This study examined the preliminary results in two subjects of an automated stimulation system which can rapidly characterize a large combination of stimulation electrodes. Our preliminary findings suggested that the stimulation grid was able to produce a number of clustered EMG activities and finger forces. This robust ability to flexibly generate different grasp patterns demonstrates the promise of the methodology in future applications for FES and rehabilitation.
Collapse
|
9
|
Zheng Y, Hu X. Reduced muscle fatigue using kilohertz-frequency subthreshold stimulation of the proximal nerve. J Neural Eng 2018; 15:066010. [DOI: 10.1088/1741-2552/aadecc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Zheng Y, Hu X. Improved muscle activation using proximal nerve stimulation with subthreshold current pulses at kilohertz-frequency. J Neural Eng 2018; 15:046001. [PMID: 29569574 DOI: 10.1088/1741-2552/aab90f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Transcutaneous electrical nerve stimulation can help individuals with neurological disorders to regain their motor function by activating muscles externally. However, conventional stimulation technique often induces near-simultaneous recruitment of muscle fibers, leading to twitch forces time-locked to the stimulation. APPROACH To induce less synchronized activation of finger flexor muscles, we delivered clustered narrower pulses to the proximal segment of the median and ulnar nerves at a carrier frequency of either 10 kHz (with an 80 µs pulse width) or 7.14 kHz (with a 120 µs pulse width) (high-frequency mode, HF), and different clustered pulses were delivered at a frequency of 30 or 40 Hz. Conventional stimulation with pulse frequency of 30 or 40 Hz (low-frequency mode, LF) was used for comparison. With matched elicited muscle forces between the HF and LF modes, the force variation, the high-density electromyogram (EMG) signals recorded at the finger flexor muscles and stimulation-induced-pain levels were compared. MAIN RESULTS The compound action potentials in the 10 kHz HF mode revealed a significant difference (i.e. a lower amplitude and area, and a wider duration) compared with the LF mode, indicating cancellations of asynchronized action potentials. A smaller fluctuation in the elicited forces in the 10 kHz mode further demonstrated the less synchronized activation of different motor units. These effects tended to be weaker in the 7.14 kHz HF condition. However, the levels of pain sensation was not reduced in the HF mode potentially due to the high charge density used in the HF mode. Our findings indicated that different nerve fibers were recruited asynchronously through summations of different numbers of subthreshold depolarizations in the HF mode. SIGNIFICANCE Compared with the LF mode, the HF mode stimulation was capable of activating the nerve fibers in a less synchronized way, which is more similar to the physiological activation pattern.
Collapse
Affiliation(s)
- Yang Zheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States of America
| | | |
Collapse
|
11
|
Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation. Sci Rep 2017; 7:16595. [PMID: 29185474 PMCID: PMC5707381 DOI: 10.1038/s41598-017-16824-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
Various neurological conditions, such as stroke or spinal cord injury, result in an impaired control of the hand. One method of restoring this impairment is through functional electrical stimulation (FES). However, traditional FES techniques often lead to quick fatigue and unnatural ballistic movements. In this study, we sought to explore the capabilities of a non-invasive proximal nerve stimulation technique in eliciting various hand grasp patterns. The ulnar and median nerves proximal to the elbow joint were activated transcutanously using a programmable stimulator, and the resultant finger flexion joint angles were recorded using a motion capture system. The individual finger motions averaged across the three joints were analyzed using a cluster analysis, in order to classify the different hand grasp patterns. With low current intensity (<5 mA and 100 µs pulse width) stimulation, our results show that all of our subjects demonstrated a variety of consistent hand grasp patterns including single finger movement and coordinated multi-finger movements. This study provides initial evidence on the feasibility of a proximal nerve stimulation technique in controlling a variety of finger movements and grasp patterns. Our approach could also be developed into a rehabilitative/assistive tool that can result in flexible movements of the fingers.
Collapse
|