1
|
Maurer SV, Kong C, Terrando N, Williams CL. Dietary Choline Protects Against Cognitive Decline After Surgery in Mice. Front Cell Neurosci 2022; 15:671506. [PMID: 34970119 PMCID: PMC8712952 DOI: 10.3389/fncel.2021.671506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are a common complication following procedures such as orthopedic surgery. Using a mouse model of tibial fracture and repair surgery, we have previously shown an increase in neuroinflammation and hippocampal-dependent cognitive deficits. These changes were ameliorated with the addition of a cholinergic agonist. Here, we sought to examine the effects of a high-choline diet for 3 weeks prior to tibial fracture surgery. We evaluated memory using novel object recognition (NOR) as well as young neurons and glial cell morphology at 1 day and 2 weeks post-surgery. At both time points, tibial fracture impaired NOR performance, and dietary choline rescued these impairments. Astrocytic density and hilar granule cells increased 1 day after tibial fracture, and these increases were partially blunted by dietary choline. An increase in young neurons in the subgranular zone of the dentate gyrus was found 2 weeks after tibial fracture. This increase was partially blunted by choline supplementation. This suggests that shortly after tibial fracture, hippocampal reorganization is a possible mechanism for acute impaired memory. These findings together suggest that non-pharmaceutical approaches, such as pre-surgical dietary intervention with choline, may be able to prevent PNDs.
Collapse
Affiliation(s)
- Sara V Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Cuicui Kong
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Christina L Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
2
|
Chavda V, Madhwani K, Chaurasia B. Stroke and immunotherapy: Potential mechanisms and its implications as immune-therapeutics. Eur J Neurosci 2021; 54:4338-4357. [PMID: 33829590 DOI: 10.1111/ejn.15224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Ischemia or brain injuries are mostly associated with emergency admissions and huge mortality rates. Stroke is a fatal cerebrovascular malady and second top root of disability and death in both developing and developed countries with a projected rise of 24.9% (from 2010) by 2030. It's the most frequent cause of morbidities and systemic permanent morbidities due to its multi-organ systemic pathology. Brain edema or active immune response cause disturbed or abnormal systemic affects causing inflammatory damage leading to secondary infection and secondary immune response which leads to activation like pneumonia or urine tract infections. There are a variety of post stroke treatments available which claims their usefulness in reducing or inhibiting post stroke and recurrent stroke damage followed by heavy inflammatory actions. Stroke does change the quality of life and also ensures daily chronic rapid neurodegeneration and cognitive decline. The only approved therapies for stroke are alteplase and thrombectomy which is associated with adverse outcomes and are not a total cure for ischemic stroke. Stroke and immune response are reciprocal to the pathology and time of event and it progresses till untreated. The immune reaction during ischemia opens new doors for advanced targeted therapeutics. Nowadays stem cell therapy has shown better results in stroke-prone individuals. Few monoclonal antibodies like natalizumab have shown great impact on pre-clinical and clinical stroke trial studies. In this current review, we have explored an immunology of stroke, current therapeutic scenario and future potential targets as immunotherapeutic agents in stroke therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Division of Anesthesia, Sardar Women's Hospital, Ahmadabad, Gujarat, India
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| | | |
Collapse
|
3
|
Soch A, Sominsky L, Younesi S, De Luca SN, Gunasekara M, Bozinovski S, Spencer SJ. The role of microglia in the second and third postnatal weeks of life in rat hippocampal development and memory. Brain Behav Immun 2020; 88:675-687. [PMID: 32360602 DOI: 10.1016/j.bbi.2020.04.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia are resident immune cells of the central nervous system (CNS). In adulthood they are involved in surveillance and responses to pathogens and injury and prenatally they play a role in brain development. However, the role of microglia during the early postnatal period and how they impact development long-term remains poorly understood. Here, to investigate the specific role of microglia in postnatal development, we used a Cx3cr1-Dtr transgenic Wistar rat model to acutely ablate microglia from either postnatal day (P) 7 or 14. We specifically assessed how transient microglial ablation affected astrocytes and neurons acutely, during the juvenile period, and in adulthood. Hippocampal microglial numbers remained low at P21 in the P7-ablated animals and complexity remained reduced after P14-ablation. This protracted effect on these key immune cells led to a small but significant increase in CA1 mature neuron numbers and a significant increase in astrocyte density in the subgranular dentate gyrus in adults that had their microglia ablated at P14. However, these histological differences were small, and spatial and recognition memory in novel objection and place recognition tests were not affected. Overall, our data reveal for the first time that the transient depletion of microglia during the neonatal period impacts briefly on the brain but that the long-lasting effects are minimal. Neonatal microglia may be dispensable in the establishment of hippocampal brain function. These data also imply that novel therapeutic anti-inflammatories that cross the blood-brain barrier to inhibit microglia are unlikely to have long-term negative consequences if administered in the neonatal period.
Collapse
Affiliation(s)
- Alita Soch
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Maneesha Gunasekara
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Vic., Australia.
| |
Collapse
|
4
|
Zhang Q, Li J, Huang S, Yang M, Liang S, Liu W, Chen L, Tao J. Functional connectivity of the retrosplenial cortex in rats with ischemic stroke is improved by electroacupuncture. Acupunct Med 2020; 39:200-207. [PMID: 32529883 DOI: 10.1177/0964528420921190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The aim of this study was to investigate the central mechanism underlying the putative beneficial effects of electroacupuncture (EA) on learning and memory ability of rats with ischemic stroke-induced cognitive deficits by resting-state functional magnetic resonance imaging (fMRI). METHODS A rat model of middle cerebral artery occlusion (MCAO)-induced cognitive deficit (MICD) was established. Rats were randomly assigned into a sham-operated control group (SC group, n = 12), untreated MICD model group (MICD group, n = 12), and MICD group receiving EA treatment at GV20 and GV24 (MICD + EA group, n = 12). RESULTS Compared to the MICD group, rats in the MICD + EA group receiving EA at GV20 and GV24 exhibited significantly shortened escape latency times and crossed the position of the platform a significantly increased number of times during the Morris water maze test on the 14th day after EA, which suggested EA could significantly improve spatial learning and memory ability. Furthermore, compared to the MICD group, functional connectivity of the left retrosplenial cortex (RSC) with the left hippocampus, left RSC, right RSC, left cingulate gyrus, right cingulate gyrus, right tegmentum of midbrain, and right visual cortex was increased in the MICD + EA group; the MICD group showed decreased functional connectivity of the left RSC with the left hippocampus, right hippocampus, left RSC, right RSC, right amygdaloid body, left visual cortex, and right visual cortex. CONCLUSION These findings suggest that EA at GV20 and GV24 might improve the learning and memory ability of MICD rats by increasing the functional connectivity between the RSC and hippocampus, cingulate gyrus and midbrain, which is encouraging for the potential treatment for cognitive impairment secondary to ischemia stroke.
Collapse
Affiliation(s)
- Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianhong Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sheng Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minguang Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| |
Collapse
|
5
|
Podraza KM, Mehta Y, Husak VA, Lippmann E, O'Brien TE, Kartje GL, Tsai SY. Improved functional outcome after chronic stroke with delayed anti-Nogo-A therapy: A clinically relevant intention-to-treat analysis. J Cereb Blood Flow Metab 2018; 38:1327-1338. [PMID: 28952904 PMCID: PMC6077927 DOI: 10.1177/0271678x17730994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/15/2022]
Abstract
Many preclinical treatment strategies for stroke have failed when tested in human trials. Although the reasons for these translation failures are multifactorial, one potential concern is the statistical analysis of the preclinical data. One way to rigorously evaluate new therapies is to use an intention-to-treat analysis in preclinical studies. Therefore, in this study, we set out to evaluate the treatment efficacy of a potential clinically relevant therapeutic agent for stroke, i.e., anti-Nogo-A immunotherapy, using an intention-to-treat analysis. Adult rats were trained on the skilled forelimb reaching task and subsequently underwent an ischemic stroke. Nine weeks later, the rats either received intracerebroventricular anti-Nogo-A antibody, control antibody, or no treatment. Skilled reaching performance was assessed by a non-linear model using both an intention-to-treat and per-protocol analysis. Following testing, dendritic complexity was evaluated in the contralesional and perilesional sensorimotor cortex. Both intention-to-treat and per-protocol analysis showed that anti-Nogo-A immunotherapy resulted in statistically significant improved recovery on the skilled forelimb reaching task, although treatment effect was less (though statistically significant) in the intention-to-treat group. Improved functional performance was not shown to be associated with dendritic changes. In conclusion, this study provides evidence for the importance of using intention-to-treat paradigms in testing preclinical therapeutic strategies.
Collapse
Affiliation(s)
- Katherine M Podraza
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
- Loyola University Chicago Health
Sciences Division, Maywood, IL, USA
| | - Yasmin Mehta
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
| | - Vicki A Husak
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
| | - Elise Lippmann
- Loyola University Chicago Health
Sciences Division, Maywood, IL, USA
| | - Timothy E O'Brien
- Department of Mathematics and Statistics
and Institute of Environmental Sustainability, Loyola University Chicago, Chicago,
IL, USA
| | - Gwendolyn L Kartje
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
- Loyola University Chicago Health
Sciences Division, Maywood, IL, USA
| | - Shih-Yen Tsai
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
| |
Collapse
|
6
|
Wen T, Zhang X, Liang S, Li Z, Xing X, Liu W, Tao J. Electroacupuncture Ameliorates Cognitive Impairment and Spontaneous Low-Frequency Brain Activity in Rats with Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:2596-2605. [PMID: 30220306 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To evaluate whether electroacupuncture (EA) at Baihui (DU20) and Shenting (DU24) acupoints could improve cognitive function and enhance spontaneous low-frequency brain activity in rats with ischemic stroke. METHODS Total 36 rats were randomly divided into 3 groups-the sham surgery (Sham) group, the middle cerebral artery occlusion induced cognitive deficit (MICD) group, and the MICD with EA (MICD + EA) treatment group. The rats in MICD + EA group received EA treatment at DU20 and DU24 acupoints for 14 consecutive days after the surgery. The Morris water maze test was performed to assess the spatial learning and memory ability of the rats. Magnetic resonance imaging (MRI) was used to investigate the infarction volume and spontaneous low-frequency brain activity of each group. RESULTS After EA for 14 days, the learning and memory ability of the MICD rats was improved, and the brain infarction volume was reduced. Furthermore, basing on the fMRI amplitude of low-frequency fluctuation (ALFF) analysis, the decreased ALFF of the MICD rats was found in auditory cortex, cingulate gyrus, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, prelimbic cortex, retrosplenial cortex, and sensory cortex compared with the rats in sham group. However, these suppressive regions were notably attenuated after EA treatment. CONCLUSIONS Our results suggested that EA at DU20 and DU24 acupoints could ameliorate cognitive impairment in rats with ischemic stroke, and the protective effect of EA may attribute to reactivating the cognition-related brain regions, such as hippocampus, retrosplenial cortex, cingulate gyrus, prelimbic cortex, and sensory cortex.
Collapse
Affiliation(s)
- Tao Wen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Rehabilitation Department, Hubei Province Hospital of Traditional Chinese Medicine, Wuhan, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xiufeng Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Rehabilitation Department, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Shengxiang Liang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Physical Science and Technology, Zhengzhou University, Zhengzhou, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xuemei Xing
- Rehabilitation Department, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
7
|
Otero-Ortega L, Gómez-de Frutos MC, Laso-García F, Sánchez-Gonzalo A, Martínez-Arroyo A, Díez-Tejedor E, Gutiérrez-Fernández M. NogoA Neutralization Promotes Axonal Restoration After White Matter Injury In Subcortical Stroke. Sci Rep 2017; 7:9431. [PMID: 28842591 PMCID: PMC5573364 DOI: 10.1038/s41598-017-09705-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
Blocking axonal growth inhibitor NogoA has been of great interest for promoting axonal recovery from neurological diseases. The present study investigates the therapeutic effects of blocking NogoA, inducing functional recovery and promoting white matter repair in an experimental animal model of stroke. Adult male rats were subjected to white matter injury by subcortical ischemic stroke. Twenty-four hours after surgery, 250 ug of anti-NogoA or anti-IgG-1 were administered through the tail vein. The quantity of NogoA protein was determined by immunohistochemistry in the brain and peripheral organs. In addition, functional status, lesion size, fiber tract integrity, axonal sprouting and white matter repair markers were analyzed. Moreover, an in vitro study was performed in order to strengthen the results obtained in vivo. A lower quantity of NogoA protein was found in the brain and peripheral organs of the animals that received anti-NogoA treatment. The animals receiving anti-NogoA treatment showed significantly better results in terms of functional recovery, fiber tract integrity, axonal sprouting and white matter repair markers compared with the control group at 28 days. White matter integrity was in part restored by antibody-mediated inhibition of NogoA administration in those animals that were subjected to an axonal injury by subcortical stroke. This white matter restoration triggered functional recovery.
Collapse
Affiliation(s)
- Laura Otero-Ortega
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Madrid, Spain
| | - Fernando Laso-García
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Madrid, Spain
| | - Alba Sánchez-Gonzalo
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Madrid, Spain
| | - Arturo Martínez-Arroyo
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Madrid, Spain.
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Shepherd DJ, Tsai SY, Cappucci SP, Wu JY, Farrer RG, Kartje GL. The Subventricular Zone Response to Stroke Is Not a Therapeutic Target of Anti-Nogo-A Immunotherapy. J Neuropathol Exp Neurol 2017; 76:683-696. [DOI: 10.1093/jnen/nlx050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Daniel J. Shepherd
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Shih-Yen Tsai
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Stefanie P. Cappucci
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Joanna Y. Wu
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Robert G. Farrer
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Gwendolyn L. Kartje
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| |
Collapse
|
9
|
Li K, Cheng X, Jiang J, Wang J, Xie J, Hu X, Huang Y, Song L, Liu M, Cai L, Chen L, Zhao S. The toxic influence of paraquat on hippocampal neurogenesis in adult mice. Food Chem Toxicol 2017; 106:356-366. [PMID: 28576469 DOI: 10.1016/j.fct.2017.05.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/09/2023]
Abstract
Paraquat, a fast-acting non-selective contact herbicide, is considered an etiological factor related to Parkinson's disease. This study investigated its effects on hippocampal neurogenesis and cognition in adult mice as well as possible mechanisms for the effects. We administered paraquat (1.25 mg/kg, intraperitoneal injection, i.p.) and an equal volume of normal saline for 3 weeks to adult male C57BL/6J mice. The results showed that hippocampus-dependent spatial learning and memory was significantly impaired in paraquat-treated mice. Moreover, paraquat administration inhibited the proliferation of neural progenitor cells, and impaired the survival and altered the fate decision of newly generated cells in the hippocampus. The expression levels of caspase-3 and glial fibrillary acidic protein were significantly higher in paraquat-treated mice than in control mice. Interestingly, paraquat reduced the phosphorylation of Akt, but did not affect the total amount of Akt. In conclusion, our findings suggest that paraquat negatively affected adult hippocampal neurogenesis and cognition function.
Collapse
Affiliation(s)
- Kaikai Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xinran Cheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jinhua Jiang
- Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang 310021, People's Republic of China.
| | - Jiutao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, People's Republic of China.
| | - Jiongfang Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yingxue Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Lingzhen Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Mengmeng Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Leiming Cai
- Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang 310021, People's Republic of China.
| | - Liezhong Chen
- Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang 310021, People's Republic of China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|