1
|
Pellegrini F, Delorme A, Nikulin V, Haufe S. Identifying good practices for detecting inter-regional linear functional connectivity from EEG. Neuroimage 2023; 277:120218. [PMID: 37307866 PMCID: PMC10374983 DOI: 10.1016/j.neuroimage.2023.120218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Aggregating voxel-level statistical dependencies between multivariate time series is an important intermediate step when characterising functional connectivity (FC) between larger brain regions. However, there are numerous ways in which voxel-level data can be aggregated into inter-regional FC, and the advantages of each of these approaches are currently unclear. In this study we generate ground-truth data and compare the performances of various pipelines that estimate directed and undirected linear phase-to-phase FC between regions. We test the ability of several existing and novel FC analysis pipelines to identify the true regions within which connectivity was simulated. We test various inverse modelling algorithms, strategies to aggregate time series within regions, and connectivity metrics. Furthermore, we investigate the influence of the number of interactions, the signal-to-noise ratio, the noise mix, the interaction time delay, and the number of active sources per region on the ability of detecting phase-to-phase FC. Throughout all simulated scenarios, lowest performance is obtained with pipelines involving the absolute value of coherency. Further, the combination of dynamic imaging of coherent sources (DICS) beamforming with directed FC metrics that aggregate information across multiple frequencies leads to unsatisfactory results. Pipelines that show promising results with our simulated pseudo-EEG data involve the following steps: (1) Source projection using the linearly-constrained minimum variance (LCMV) beamformer. (2) Principal component analysis (PCA) using the same fixed number of components within every region. (3) Calculation of the multivariate interaction measure (MIM) for every region pair to assess undirected phase-to-phase FC, or calculation of time-reversed Granger Causality (TRGC) to assess directed phase-to-phase FC. We formulate recommendations based on these results that may increase the validity of future experimental connectivity studies. We further introduce the free ROIconnect plugin for the EEGLAB toolbox that includes the recommended methods and pipelines that are presented here. We show an exemplary application of the best performing pipeline to the analysis of EEG data recorded during motor imagery.
Collapse
Affiliation(s)
- Franziska Pellegrini
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany; Bernstein Center for Computational Neuroscience, Philippstraße 13, Berlin, 10117, Germany.
| | - Arnaud Delorme
- Swartz Center for Computational Neuroscience, 9500 Gilman Dr., La Jolla, California, 92903-0559, United States
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Stephanstraße 1a, Leipzig, 04103, Germany
| | - Stefan Haufe
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany; Bernstein Center for Computational Neuroscience, Philippstraße 13, Berlin, 10117, Germany; Technische Universität Berlin, Straße des 17. Juni 135, Berlin, 10623, Germany; Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestraße 2-12, Berlin, 10587, Germany
| |
Collapse
|
2
|
Rijal S, Corona L, Perry MS, Tamilia E, Madsen JR, Stone SSD, Bolton J, Pearl PL, Papadelis C. Functional connectivity discriminates epileptogenic states and predicts surgical outcome in children with drug resistant epilepsy. Sci Rep 2023; 13:9622. [PMID: 37316544 PMCID: PMC10267141 DOI: 10.1038/s41598-023-36551-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Normal brain functioning emerges from a complex interplay among regions forming networks. In epilepsy, these networks are disrupted causing seizures. Highly connected nodes in these networks are epilepsy surgery targets. Here, we assess whether functional connectivity (FC) using intracranial electroencephalography can quantify brain regions epileptogenicity and predict surgical outcome in children with drug resistant epilepsy (DRE). We computed FC between electrodes on different states (i.e. interictal without spikes, interictal with spikes, pre-ictal, ictal, and post-ictal) and frequency bands. We then estimated the electrodes' nodal strength. We compared nodal strength between states, inside and outside resection for good- (n = 22, Engel I) and poor-outcome (n = 9, Engel II-IV) patients, respectively, and tested their utility to predict the epileptogenic zone and outcome. We observed a hierarchical epileptogenic organization among states for nodal strength: lower FC during interictal and pre-ictal states followed by higher FC during ictal and post-ictal states (p < 0.05). We further observed higher FC inside resection (p < 0.05) for good-outcome patients on different states and bands, and no differences for poor-outcome patients. Resection of nodes with high FC was predictive of outcome (positive and negative predictive values: 47-100%). Our findings suggest that FC can discriminate epileptogenic states and predict outcome in patients with DRE.
Collapse
Affiliation(s)
- Sakar Rijal
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Ludovica Corona
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scellig S D Stone
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA.
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA.
- School of Medicine, Texas Christian University, Fort Worth, TX, 76129, USA.
| |
Collapse
|
3
|
Chiarion G, Sparacino L, Antonacci Y, Faes L, Mesin L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering (Basel) 2023; 10:bioengineering10030372. [PMID: 36978763 PMCID: PMC10044923 DOI: 10.3390/bioengineering10030372] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks.
Collapse
Affiliation(s)
- Giovanni Chiarion
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Laura Sparacino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
4
|
Degras D, Ting CM, Ombao H. Markov-switching state-space models with applications to neuroimaging. Comput Stat Data Anal 2022. [DOI: 10.1016/j.csda.2022.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Li F, Jiang L, Liao Y, Si Y, Yi C, Zhang Y, Zhu X, Yang Z, Yao D, Cao Z, Xu P. Brain variability in dynamic resting-state networks identified by fuzzy entropy: a scalp EEG study. J Neural Eng 2021; 18. [PMID: 34153948 DOI: 10.1088/1741-2552/ac0d41] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
Objective.Exploring the temporal variability in spatial topology during the resting state attracts growing interest and becomes increasingly useful to tackle the cognitive process of brain networks. In particular, the temporal brain dynamics during the resting state may be delineated and quantified aligning with cognitive performance, but few studies investigated the temporal variability in the electroencephalogram (EEG) network as well as its relationship with cognitive performance.Approach.In this study, we proposed an EEG-based protocol to measure the nonlinear complexity of the dynamic resting-state network by applying the fuzzy entropy. To further validate its applicability, the fuzzy entropy was applied into simulated and two independent datasets (i.e. decision-making and P300).Main results.The simulation study first proved that compared to the existing methods, this approach could not only exactly capture the pattern dynamics in time series but also overcame the magnitude effect of time series. Concerning the two EEG datasets, the flexible and robust network architectures of the brain cortex at rest were identified and distributed at the bilateral temporal lobe and frontal/occipital lobe, respectively, whose variability metrics were found to accurately classify different groups. Moreover, the temporal variability of resting-state network property was also either positively or negatively related to individual cognitive performance.Significance.This outcome suggested the potential of fuzzy entropy for evaluating the temporal variability of the dynamic resting-state brain networks, and the fuzzy entropy is also helpful for uncovering the fluctuating network variability that accounts for the individual decision differences.
Collapse
Affiliation(s)
- Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Lin Jiang
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yuanyuan Liao
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yajing Si
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Psychology, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Chanli Yi
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Zehong Cao
- Discipline of Information and Communication Technology, University of Tasmania, TAS, Australia
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| |
Collapse
|
6
|
Zhang L, Wang P, Zhang R, Chen M, Shi L, Gao J, Hu Y. The Influence of Different EEG References on Scalp EEG Functional Network Analysis During Hand Movement Tasks. Front Hum Neurosci 2020; 14:367. [PMID: 32982708 PMCID: PMC7493128 DOI: 10.3389/fnhum.2020.00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023] Open
Abstract
Although scalp EEG functional networks have been applied to the study of motor tasks using electroencephalography (EEG), the selection of a suitable reference electrode has not been sufficiently researched. To investigate the effects of the original reference (REF-CZ), the common average reference (CAR), and the reference electrode standardization technique (REST) on scalp EEG functional network analysis during hand movement tasks, EEGs of 17 right-handed subjects performing self-paced hand movements were collected, and scalp functional networks [coherence (COH), phase-locking value (PLV), phase lag index (PLI)] with different references were constructed. Compared with the REF-CZ reference, the networks with CAR and REST references exhibited more significant increases in connectivity during the left-/right-hand movement preparation (MP) and movement execution (ME) stages. The node degree of the channel near the reference electrode was significantly reduced by the REF-CZ reference. CAR and REST both decreased this reference effect, REST more so than CAR. We confirmed that the choice of reference would affect the analysis of the functional network during hand movement tasks, and the REST reference can greatly reduce the effects of the online recording reference on the analysis of EEG connectivity.
Collapse
Affiliation(s)
- Lipeng Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| | - Peng Wang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| | - Rui Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| | - Mingming Chen
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology, Beijing, China
| | - Jinfeng Gao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| | - Yuxia Hu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| |
Collapse
|
7
|
Päeske L, Hinrikus H, Lass J, Raik J, Bachmann M. Negative Correlation Between Functional Connectivity and Small-Worldness in the Alpha Frequency Band of a Healthy Brain. Front Physiol 2020; 11:910. [PMID: 32903521 PMCID: PMC7437013 DOI: 10.3389/fphys.2020.00910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/08/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to analyze the relationship between resting state electroencephalographic (EEG) alpha functional connectivity (FC) and small-world organization. For that purpose, Pearson correlation was calculated between FC and small-worldness (SW). Three undirected FC measures were used: magnitude-squared coherence (MSC), imaginary part of coherency (ICOH), and synchronization likelihood (SL). As a result, statistically significant negative correlation occurred between FC and SW for all three FC measures. Small-worldness of MSC and SL were mostly above 1, but lower than 1 for ICOH, suggesting that functional EEG networks did not have small-world properties. Based on the results of the current study, we suggest that decreased alpha small-world organization is compensated with increased connectivity of alpha oscillations in a healthy brain.
Collapse
Affiliation(s)
- Laura Päeske
- Centre for Biomedical Engineering, Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Hiie Hinrikus
- Centre for Biomedical Engineering, Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Jaanus Lass
- Centre for Biomedical Engineering, Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Jaan Raik
- Department of Computer Systems, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Maie Bachmann
- Centre for Biomedical Engineering, Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
8
|
Meng Y, Zhang J, Liu S, Wu C. Influence of different acoustic cues in L1 lexical tone on the perception of L2 lexical stress using principal component analysis: an ERP study. Exp Brain Res 2020; 238:1489-1498. [PMID: 32435921 DOI: 10.1007/s00221-020-05823-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
Previous studies have widely explored the prosodic transfer from L1 to L2 during speech perception across stress languages. However, few if any studies have investigated the transfer from L1 tonal language to L2 stress language and the relative roles of different acoustic cues underlying the transfer. Therefore, the current study was conducted to compare the perception of English lexical stress between Mandarin and Cantonese speakers who learn English as a foreign language. The event-related potential measurements and the principal component analysis were conducted for the two groups to explore the roles of different acoustic cues in the perception of English speech. The results demonstrated that compared with the Mandarin group, the Cantonese speakers relied more on pitch information and the reliance holds even when all the three cues varied simultaneously. Therefore, it was concluded that prosodic transfer from L1 lexical tone to L2 lexical stress occurred at the acoustic level, and the native linguistic background shaped the manner how speakers perceived the L2 speech.
Collapse
Affiliation(s)
- Yaxuan Meng
- Faculty of Education, University of Macau, Macau, China.
- Faculty of Linguistics, Philology and Phonetics, University of Oxford, Oxford, UK.
| | - Juan Zhang
- Faculty of Education, University of Macau, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Shun Liu
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Chenggang Wu
- Faculty of Education, University of Macau, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| |
Collapse
|
9
|
Venkatasubramanian U, Pearson JF, Beckert L, Jones RD. Characteristic changes in the EEG signals between microsleeps and preceding responsive states. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1709-1712. [PMID: 31946226 DOI: 10.1109/embc.2019.8857718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This work aims at identifying characteristic features of EEG to demarcate a microsleep from preceding responsive states. The EEG signals, after reference electrode standardization technique (REST) re-referencing, were processed through a time-varying general linear Kalman filter (TVGLKF) to derive time-varying auto-regressive (TVAR) parameters. The time-varying effective connectivity measure of orthogonal partial directed coherence (OPDC) was obtained for every instant at 256 Hz. Effective connectivity matrices formed using these OPDC measures, with the scalp electrodes as nodes were processed further using graph theory. Community-based measures were investigated and statistical significances compared. Non-parametric Wilcoxon signed rank test was used for significance analysis, with Cohen-type and Common Language effect size (CLES) as measures of effect sizes. The results showed a decrease in directional modularity from anterior to posterior, in theta, alpha, and beta bands in microsleeps. The alpha band showed the highest significance with a Cohen-type effect size of 1.25 and a median percentage difference of 23% across subjects, with a range of 13-28%. Flexibility and integration also decreased with average percentage of 25% (17-35%) and 20% (16-32%), respectively, while recruitment increased on an average of 11% (3-16%), wherever significant across all bands. These community-based measures can help characterize and explain changes in brain mechanisms, and can also serve as potential biomarkers for microsleep detection.
Collapse
|
10
|
Yao D, Qin Y, Hu S, Dong L, Bringas Vega ML, Valdés Sosa PA. Which Reference Should We Use for EEG and ERP practice? Brain Topogr 2019; 32:530-549. [PMID: 31037477 PMCID: PMC6592976 DOI: 10.1007/s10548-019-00707-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
Abstract
Which reference is appropriate for the scalp ERP and EEG studies? This unsettled problem still inspires unceasing debate. The ideal reference should be the one with zero or constant potential but unfortunately it is well known that no point on the body fulfills this condition. Consequently, more than ten references are used in the present EEG-ERP studies. This diversity seriously undermines the reproducibility and comparability of results across laboratories. A comprehensive review accompanied by a brief communication with rigorous derivations and notable properties (Hu et al. Brain Topogr, 2019. https://doi.org/10.1007/s10548-019-00706-y ) is thus necessary to provide application-oriented principled recommendations. In this paper current popular references are classified into two categories: (1) unipolar references that construct a neutral reference, including both online unipolar references and offline re-references. Examples of unipolar references are the reference electrode standardization technique (REST), average reference (AR), and linked-mastoids/ears reference (LM); (2) non-unipolar references that include the bipolar reference and the Laplacian reference. We show that each reference is derived with a different assumption and serves different aims. We also note from (Hu et al. 2019) that there is a general form for the reference problem, the 'no memory' property of the unipolar references, and a unified estimator for the potentials at infinity termed as the regularized REST (rREST) which has more advantageous statistical evidence than AR. A thorough discussion of the advantages and limitations of references is provided with recommendations in the hope to clarify the role of each reference in the ERP and EEG practice.
Collapse
Affiliation(s)
- Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, 611731, China. .,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China. .,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China.
| | - Yun Qin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, 611731, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Shiang Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, 611731, China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Dong
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maria L Bringas Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, 611731, China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Pedro A Valdés Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, 611731, China. .,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
11
|
Newson JJ, Thiagarajan TC. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front Hum Neurosci 2019; 12:521. [PMID: 30687041 PMCID: PMC6333694 DOI: 10.3389/fnhum.2018.00521] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
A significant proportion of the electroencephalography (EEG) literature focuses on differences in historically pre-defined frequency bands in the power spectrum that are typically referred to as alpha, beta, gamma, theta and delta waves. Here, we review 184 EEG studies that report differences in frequency bands in the resting state condition (eyes open and closed) across a spectrum of psychiatric disorders including depression, attention deficit-hyperactivity disorder (ADHD), autism, addiction, bipolar disorder, anxiety, panic disorder, post-traumatic stress disorder (PTSD), obsessive compulsive disorder (OCD) and schizophrenia to determine patterns across disorders. Aggregating across all reported results we demonstrate that characteristic patterns of power change within specific frequency bands are not necessarily unique to any one disorder but show substantial overlap across disorders as well as variability within disorders. In particular, we show that the most dominant pattern of change, across several disorder types including ADHD, schizophrenia and OCD, is power increases across lower frequencies (delta and theta) and decreases across higher frequencies (alpha, beta and gamma). However, a considerable number of disorders, such as PTSD, addiction and autism show no dominant trend for spectral change in any direction. We report consistency and validation scores across the disorders and conditions showing that the dominant result across all disorders is typically only 2.2 times as likely to occur in the literature as alternate results, and typically with less than 250 study participants when summed across all studies reporting this result. Furthermore, the magnitudes of the results were infrequently reported and were typically small at between 20% and 30% and correlated weakly with symptom severity scores. Finally, we discuss the many methodological challenges and limitations relating to such frequency band analysis across the literature. These results caution any interpretation of results from studies that consider only one disorder in isolation, and for the overall potential of this approach for delivering valuable insights in the field of mental health.
Collapse
|
12
|
Franciotti R, Falasca NW, Arnaldi D, Famà F, Babiloni C, Onofrj M, Nobili FM, Bonanni L. Cortical Network Topology in Prodromal and Mild Dementia Due to Alzheimer's Disease: Graph Theory Applied to Resting State EEG. Brain Topogr 2019; 32:127-141. [PMID: 30145728 PMCID: PMC6326972 DOI: 10.1007/s10548-018-0674-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Graph theory analysis on resting state electroencephalographic rhythms disclosed topological properties of cerebral network. In Alzheimer's disease (AD) patients, this approach showed mixed results. Granger causality matrices were used as input to the graph theory allowing to estimate the strength and the direction of information transfer between electrode pairs. The number of edges (degree), the number of inward edges (in-degree), of outgoing edges (out-degree) were statistically compared among healthy controls, patients with mild cognitive impairment due to AD (AD-MCI) and AD patients with mild dementia (ADD) to evaluate if degree abnormality could involve low and/or high degree vertices, the so called hubs, in both prodromal and over dementia stage. Clustering coefficient and local efficiency were evaluated as measures of network segregation, path length and global efficiency as measures of integration, the assortativity coefficient as a measure of resilience. Degree, in-degree and out-degree values were lower in AD-MCI and ADD than the control group for non-hubs and hubs vertices. The number of edges was preserved for frontal electrodes, where patients' groups showed an additional hub in F3. Clustering coefficient was lower in ADD compared with AD-MCI in the right occipital electrode, and it was positively correlated with mini mental state examination. Local and global efficiency values were lower in patients' than control groups. Our results show that the topology of the network is altered in AD patients also in its prodromal stage, begins with the reduction of the number of edges and the loss of the local and global efficiency.
Collapse
Affiliation(s)
- Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Via Luigi Polacchi, 66013, Chieti, Italy
| | - Nicola Walter Falasca
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Via Luigi Polacchi, 66013, Chieti, Italy
- BIND - Behavioral Imaging and Neural Dynamics Center, "G. d'Annunzio" University, Chieti, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze (DINOGMI), Università di Genova, Genoa, Italy
- U.O. Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze (DINOGMI), Università di Genova, Genoa, Italy
- U.O. Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
- IRCCS S. Raffaele Pisana, Rome, Italy
- IRCCS S. Raffaele Cassino, Cassino, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Via Luigi Polacchi, 66013, Chieti, Italy
| | - Flavio Mariano Nobili
- Dipartimento di Neuroscienze (DINOGMI), Università di Genova, Genoa, Italy
- U.O. Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Via Luigi Polacchi, 66013, Chieti, Italy.
| |
Collapse
|
13
|
Dimitriadis SI, Brindley L, Evans LH, Linden DE, Singh KD. A Novel, Fast, Reliable, and Data-Driven Method for Simultaneous Single-Trial Mining and Amplitude-Latency Estimation Based on Proximity Graphs and Network Analysis. Front Neuroinform 2018; 12:59. [PMID: 30510507 PMCID: PMC6252329 DOI: 10.3389/fninf.2018.00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
Both amplitude and latency of single-trial EEG/MEG recordings provide valuable information regarding functionality of the human brain. In this article, we provided a data-driven graph and network-based framework for mining information from multi-trial event-related brain recordings. In the first part, we provide the general outline of the proposed methodological approach. In the second part, we provide a more detailed illustration, and present the obtained results on every step of the algorithmic procedure. To justify the proposed framework instead of presenting the analytic data mining and graph-based steps, we address the problem of response variability, a prerequisite to reliable estimates for both the amplitude and latency on specific N/P components linked to the nature of the stimuli. The major question addressed in this study is the selection of representative single-trials with the aim of uncovering a less noisey averaged waveform elicited from the stimuli. This graph and network-based algorithmic procedure increases the signal-to-noise (SNR) of the brain response, a key pre-processing step to reveal significant and reliable amplitude and latency at a specific time after the onset of the stimulus and with the right polarity (N or P). We demonstrated the whole approach using electroencephalography (EEG) auditory mismatch negativity (MMN) recordings from 42 young healthy controls. The method is novel, fast and data-driven succeeding first to reveal the true waveform elicited by MMN on different conditions (frequency, intensity, duration, etc.). The proposed graph-oriented algorithmic pipeline increased the SNR of the characteristic waveforms and the reliability of amplitude and latency within the adopted cohort. We also demonstrated how different EEG reference schemes (REST vs. average) can influence amplitude-latency estimation. Simulation results revealed robust amplitude-latency estimations under different SNR and amplitude-latency variations with the proposed algorithm.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lisa Brindley
- Department of Psychology, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Lisa H Evans
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - David E Linden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
14
|
Levin AR, Méndez Leal AS, Gabard-Durnam LJ, O'Leary HM. BEAPP: The Batch Electroencephalography Automated Processing Platform. Front Neurosci 2018; 12:513. [PMID: 30131667 PMCID: PMC6090769 DOI: 10.3389/fnins.2018.00513] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
Electroencephalography (EEG) offers information about brain function relevant to a variety of neurologic and neuropsychiatric disorders. EEG contains complex, high-temporal-resolution information, and computational assessment maximizes our potential to glean insight from this information. Here we present the Batch EEG Automated Processing Platform (BEAPP), an automated, flexible EEG processing platform incorporating freely available software tools for batch processing of multiple EEG files across multiple processing steps. BEAPP does not prescribe a specified EEG processing pipeline; instead, it allows users to choose from a menu of options for EEG processing, including steps to manage EEG files collected across multiple acquisition setups (e.g., for multisite studies), minimize artifact, segment continuous and/or event-related EEG, and perform basic analyses. Overall, BEAPP aims to streamline batch EEG processing, improve accessibility to computational EEG assessment, and increase reproducibility of results.
Collapse
Affiliation(s)
- April R Levin
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana S Méndez Leal
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Laurel J Gabard-Durnam
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Heather M O'Leary
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Center for Rare Neurological Diseases, Atlanta, GA, United States
| |
Collapse
|
15
|
Cohen D, Tsuchiya N. The Effect of Common Signals on Power, Coherence and Granger Causality: Theoretical Review, Simulations, and Empirical Analysis of Fruit Fly LFPs Data. Front Syst Neurosci 2018; 12:30. [PMID: 30090060 PMCID: PMC6068358 DOI: 10.3389/fnsys.2018.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/18/2018] [Indexed: 11/22/2022] Open
Abstract
When analyzing neural data it is important to consider the limitations of the particular experimental setup. An enduring issue in the context of electrophysiology is the presence of common signals. For example a non-silent reference electrode adds a common signal across all recorded data and this adversely affects functional and effective connectivity analysis. To address the common signals problem, a number of methods have been proposed, but relatively few detailed investigations have been carried out. As a result, our understanding of how common signals affect neural connectivity estimation is incomplete. For example, little is known about recording preparations involving high spatial-resolution electrodes, used in linear array recordings. We address this gap through a combination of theoretical review, simulations, and empirical analysis of local field potentials recorded from the brains of fruit flies. We demonstrate how a framework that jointly analyzes power, coherence, and quantities based on Granger causality reveals the presence of common signals. We further show that subtracting spatially adjacent signals (bipolar derivations) largely removes the effects of the common signals. However, in some special cases this operation itself introduces a common signal. We also show that Granger causality is adversely affected by common signals and that a quantity referred to as “instantaneous interaction” is increased in the presence of common signals. The theoretical review, simulation, and empirical analysis we present can readily be adapted by others to investigate the nature of the common signals in their data. Our contributions improve our understanding of how common signals affect power, coherence, and Granger causality and will help reduce the misinterpretation of functional and effective connectivity analysis.
Collapse
Affiliation(s)
- Dror Cohen
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Huang Y, Zhang J, Cui Y, Yang G, Liu Q, Yin G. Sensor Level Functional Connectivity Topography Comparison Between Different References Based EEG and MEG. Front Behav Neurosci 2018; 12:96. [PMID: 29867395 PMCID: PMC5962879 DOI: 10.3389/fnbeh.2018.00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022] Open
Abstract
Sensor-level functional connectivity topography (sFCT) contributes significantly to our understanding of brain networks. sFCT can be constructed using either electroencephalography (EEG) or magnetoencephalography (MEG). Here, we compared sFCT within the EEG modality and between EEG and MEG modalities. We first used simulations to look at how different EEG references-including the Reference Electrode Standardization Technique (REST), average reference (AR), linked mastoids (LM), and left mastoid references (LR)-affect EEG-based sFCT. The results showed that REST decreased the reference effects on scalp EEG recordings, making REST-based sFCT closer to the ground truth (sFCT based on ideal recordings). For the inter-modality simulation comparisons, we compared each type of EEG-sFCT with MEG-sFCT using three metrics to quantize the differences: Relative Error (RE), Overlap Rate (OR), and Hamming Distance (HD). When two sFCTs are similar, RE and HD are low, while OR is high. Results showed that among all reference schemes, EEG-and MEG-sFCT were most similar when the EEG was REST-based and the EEG and MEG were recorded simultaneously. Next, we analyzed simultaneously recorded MEG and EEG data from publicly available face-recognition experiments using a similar procedure as in the simulations. The results showed (1) if MEG-sFCT is the standard, REST-and LM-based sFCT provided results closer to this standard in the terms of HD; (2) REST-based sFCT and MEG-sFCT had the highest similarity in terms of RE; (3) REST-based sFCT had the most overlapping edges with MEG-sFCT in terms of OR. This study thus provides new insights into the effect of different reference schemes on sFCT and the similarity between MEG and EEG in terms of sFCT.
Collapse
Affiliation(s)
- Yunzhi Huang
- College of Electrical Engineering and Information Technology, Sichuan University, Chengdu, China.,College of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Junpeng Zhang
- College of Electrical Engineering and Information Technology, Sichuan University, Chengdu, China
| | - Yuan Cui
- Computer Teaching and Research Section, Chengdu Medical College, Chengdu, China
| | - Gang Yang
- College of Electrical Engineering and Information Technology, Sichuan University, Chengdu, China
| | - Qi Liu
- College of Electrical Engineering and Information Technology, Sichuan University, Chengdu, China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Global field synchronization of 40 Hz auditory steady-state response: Does it change with attentional demands? Neurosci Lett 2018; 674:127-131. [PMID: 29559420 DOI: 10.1016/j.neulet.2018.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/23/2022]
Abstract
Auditory steady-state responses (ASSRs) are increasingly used in research of neuropsychiatric disorders and for brain-computer interface applications. However, results on attentional modulation of ASSRs are inconclusive. The evaluation of large-scale effects of task-related modulation on ASSRs might give better estimation of the induced changes. The aim of the study was to test global field synchronization - a reference-independent evaluation of the amount of phase-locking among all active regions at a given frequency - during tasks differing in attentional demands to 40 Hz auditory stimulation. Twenty seven healthy young males participated in the EEG study with concurrent 40 Hz binaural click stimulation and three experimental tasks: 1) to count presented stimuli (focused attention); 2) to silently read a text (distraction); 3) to stay awake with closed eyes (resting). We showed that during auditory 40 Hz stimulation, the global field synchronization of the EEG increased as compared to the silent baseline period and the largest increase was observed when subjects counted stimuli or rested with closed eyes. Our results provide insights that depending on the method of assessment, the 40 Hz ASSR might be an indicator of both local and complex synchronization processes that are affected by the state (task performed or psychopathology) of the participants.
Collapse
|
18
|
Wu D. Hearing the Sound in the Brain: Influences of Different EEG References. Front Neurosci 2018; 12:148. [PMID: 29593487 PMCID: PMC5859362 DOI: 10.3389/fnins.2018.00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/23/2018] [Indexed: 11/13/2022] Open
Abstract
If the scalp potential signals, the electroencephalogram (EEG), are due to neural "singers" in the brain, how could we listen to them with less distortion? One crucial point is that the data recording on the scalp should be faithful and accurate, thus the choice of reference electrode is a vital factor determining the faithfulness of the data. In this study, music on the scalp derived from data in the brain using three different reference electrodes were compared, including approximate zero reference-reference electrode standardization technique (REST), average reference (AR), and linked mastoids reference (LM). The classic music pieces in waveform format were used as simulated sources inside a head model, and they were forward calculated to scalp as standard potential recordings, i.e., waveform format music from the brain with true zero reference. Then these scalp music was re-referenced into REST, AR, and LM based data, and compared with the original forward data (true zero reference). For real data, the EEG recorded in an orthodontic pain control experiment were utilized for music generation with the three references, and the scale free index (SFI) of these music pieces were compared. The results showed that in the simulation for only one source, different references do not change the music/waveform; for two sources or more, REST provide the most faithful music/waveform to the original ones inside the brain, and the distortions caused by AR and LM were spatial locations of both source and scalp electrode dependent. The brainwave music from the real EEG data showed that REST and AR make the differences of SFI between two states more recognized and found the frontal is the main region that producing the music. In conclusion, REST can reconstruct the true signals approximately, and it can be used to help to listen to the true voice of the neural singers in the brain.
Collapse
Affiliation(s)
- Dan Wu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China.,The Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Zheng G, Qi X, Li Y, Zhang W, Yu Y. A Comparative Study of Standardized Infinity Reference and Average Reference for EEG of Three Typical Brain States. Front Neurosci 2018; 12:158. [PMID: 29593490 PMCID: PMC5859052 DOI: 10.3389/fnins.2018.00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/27/2018] [Indexed: 11/24/2022] Open
Abstract
The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG) signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST) has been increasingly applied, while the average reference (AR) was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening). The analysis results revealed the following observations: (1) there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2) there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3) the global brain functional connectivity density (FCD) and local FCD have higher values for REST than for AR under different behavior states; and (4) the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands) higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording.
Collapse
Affiliation(s)
- Gaoxing Zheng
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Xiaoying Qi
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Yuzhu Li
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Yuguo Yu
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Proactive vs. reactive car driving: EEG evidence for different driving strategies of older drivers. PLoS One 2018; 13:e0191500. [PMID: 29352314 PMCID: PMC5774811 DOI: 10.1371/journal.pone.0191500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/06/2018] [Indexed: 11/19/2022] Open
Abstract
Aging is associated with a large heterogeneity in the extent of age-related changes in sensory, motor, and cognitive functions. All these functions can influence the performance in complex tasks like car driving. The present study aims to identify potential differences in underlying cognitive processes that may explain inter-individual variability in driving performance. Younger and older participants performed a one-hour monotonous driving task in a driving simulator under varying crosswind conditions, while behavioral and electrophysiological data were recorded. Overall, younger and older drivers showed comparable driving performance (lane keeping). However, there was a large difference in driving lane variability within the older group. Dividing the older group in two subgroups with low vs. high driving lane variability revealed differences between the two groups in electrophysiological correlates of mental workload, consumption of mental resources, and activation and sustaining of attention: Older drivers with high driving lane variability showed higher frontal Alpha and Theta activity than older drivers with low driving lane variability and—with increasing crosswind—a more pronounced decrease in Beta activity. These results suggest differences in driving strategies of older and younger drivers, with the older drivers using either a rather proactive and alert driving strategy (indicated by low driving lane variability and lower Alpha and Beta activity), or a rather reactive strategy (indicated by high driving lane variability and higher Alpha activity).
Collapse
|
21
|
Abstract
The present study evaluated brain connectivity using electroencephalography (EEG) data from 14 patients with schizophrenia and 14 healthy controls. Phase-Locking Value (PLV), Phase-Lag Index (PLI) and Directed Transfer Function (DTF) were calculated for the original EEG data and following current source density (CSD) transformation, re-referencing using the average reference electrode (AVERAGE) and reference electrode standardization techniques (REST). The statistical analysis of adjacency matrices was carried out using indices based on graph theory. Both CSD and REST reduced the influence of volume conducted currents. The largest group differences in connectivity were observed for the alpha band. Schizophrenic patients showed reduced connectivity strength, as well as a lower clustering coefficient and shorter characteristic path length for both measures of phase synchronization following CSD transformation or REST re-referencing. Reduced synchronization was accompanied by increased directional flow from the occipital region for the alpha band. Following the REST re-referencing, the sources of alpha activity were located at parietal rather than occipital derivations. The results of PLV and DTF demonstrated group differences in fronto-posterior asymmetry following CSD transformation, while for PLI the differences were significant only using REST. The only analysis that identified group differences in inter-hemispheric asymmetry was DTF calculated for REST. Our results suggest that a comparison of different connectivity measures using graph-based indices for each frequency band, separately, may be a useful tool in the study of disconnectivity disorders such as schizophrenia.
Collapse
|
22
|
Graph-based analysis of brain connectivity in schizophrenia. PLoS One 2017; 12:e0188629. [PMID: 29190759 PMCID: PMC5708839 DOI: 10.1371/journal.pone.0188629] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022] Open
Abstract
The present study evaluated brain connectivity using electroencephalography (EEG) data from 14 patients with schizophrenia and 14 healthy controls. Phase-Locking Value (PLV), Phase-Lag Index (PLI) and Directed Transfer Function (DTF) were calculated for the original EEG data and following current source density (CSD) transformation, re-referencing using the average reference electrode (AVERAGE) and reference electrode standardization techniques (REST). The statistical analysis of adjacency matrices was carried out using indices based on graph theory. Both CSD and REST reduced the influence of volume conducted currents. The largest group differences in connectivity were observed for the alpha band. Schizophrenic patients showed reduced connectivity strength, as well as a lower clustering coefficient and shorter characteristic path length for both measures of phase synchronization following CSD transformation or REST re-referencing. Reduced synchronization was accompanied by increased directional flow from the occipital region for the alpha band. Following the REST re-referencing, the sources of alpha activity were located at parietal rather than occipital derivations. The results of PLV and DTF demonstrated group differences in fronto-posterior asymmetry following CSD transformation, while for PLI the differences were significant only using REST. The only analysis that identified group differences in inter-hemispheric asymmetry was DTF calculated for REST. Our results suggest that a comparison of different connectivity measures using graph-based indices for each frequency band, separately, may be a useful tool in the study of disconnectivity disorders such as schizophrenia.
Collapse
|
23
|
Liang T, Hu Z, Li Y, Ye C, Liu Q. Electrophysiological Correlates of Change Detection during Delayed Matching Task: A Comparison of Different References. Front Neurosci 2017; 11:527. [PMID: 29018318 PMCID: PMC5623019 DOI: 10.3389/fnins.2017.00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Detecting the changed information between memory representation and incoming sensory inputs is a fundamental cognitive ability. By offering the promise of excellent temporal resolution, event-related potential (ERP) technique has served as a primary tool for studying this process with reference of the linked mastoid (LM). However, given that LM may distort the ERP signals, it is still undetermined whether LM is the best reference choice. The goal of the current study was to systematically compare LM, reference electrode standardization technique (REST) and average reference (AR) for assessing the ERP correlates of change detection during a delayed matching task. Colored shapes were adopted as materials while both the task-relevant shape feature and -irrelevant color feature could be changed. The results of the ERP amplitude showed that both of the task-relevant and -conjunction feature changes elicited significantly more positive posterior P2 in REST and AR, but not in LM. Besides, significantly increased N270 was observed in task-relevant and -conjunction feature changes in both the REST and LM, but in the conjunction feature change in AR. Only the REST-obtained N270 revealed a significant increment in task-irrelevant feature change, which was compatible with the delayed behavioral performance. Statistical parametric scalp mapping (SPSM) results showed a left posterior distribution for AR, an anterior distribution for LM, and both the anterior and left posterior distributions for REST. These results indicate that different types of references may provide distinct cognitive interpretations. Interestingly, only the SPSM of REST was consistent with previous fMRI findings. Combined with the evidence of simulation studies and the current observations, we take the REST-based results as the objective one, and recommend using REST technology in the future ERP data analysis.
Collapse
Affiliation(s)
- Tengfei Liang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Zhonghua Hu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Yuchen Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Chaoxiong Ye
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Department of Psychology, University of Jyväskylä, Jyväskylä, Finland.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| |
Collapse
|