1
|
Han X, Cai C, Deng W, Shi Y, Li L, Wang C, Zhang J, Rong M, Liu J, Fang B, He H, Liu X, Deng C, He X, Cao X. Landscape of human organoids: Ideal model in clinics and research. Innovation (N Y) 2024; 5:100620. [PMID: 38706954 PMCID: PMC11066475 DOI: 10.1016/j.xinn.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
In the last decade, organoid research has entered a golden era, signifying a pivotal shift in the biomedical landscape. The year 2023 marked a milestone with the publication of thousands of papers in this arena, reflecting exponential growth. However, amid this burgeoning expansion, a comprehensive and accurate overview of the field has been conspicuously absent. Our review is intended to bridge this gap, providing a panoramic view of the rapidly evolving organoid landscape. We meticulously analyze the organoid field from eight distinctive vantage points, harnessing our rich experience in academic research, industrial application, and clinical practice. We present a deep exploration of the advances in organoid technology, underpinned by our long-standing involvement in this arena. Our narrative traverses the historical genesis of organoids and their transformative impact across various biomedical sectors, including oncology, toxicology, and drug development. We delve into the synergy between organoids and avant-garde technologies such as synthetic biology and single-cell omics and discuss their pivotal role in tailoring personalized medicine, enhancing high-throughput drug screening, and constructing physiologically pertinent disease models. Our comprehensive analysis and reflective discourse provide a deep dive into the existing landscape and emerging trends in organoid technology. We spotlight technological innovations, methodological evolution, and the broadening spectrum of applications, emphasizing the revolutionary influence of organoids in personalized medicine, oncology, drug discovery, and other fields. Looking ahead, we cautiously anticipate future developments in the field of organoid research, especially its potential implications for personalized patient care, new avenues of drug discovery, and clinical research. We trust that our comprehensive review will be an asset for researchers, clinicians, and patients with keen interest in personalized medical strategies. We offer a broad view of the present and prospective capabilities of organoid technology, encompassing a wide range of current and future applications. In summary, in this review we attempt a comprehensive exploration of the organoid field. We offer reflections, summaries, and projections that might be useful for current researchers and clinicians, and we hope to contribute to shaping the evolving trajectory of this dynamic and rapidly advancing field.
Collapse
Affiliation(s)
- Xinxin Han
- Organ Regeneration X Lab, Lisheng East China Institute of Biotechnology, Peking University, Jiangsu 226200, China
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chunhui Cai
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Wei Deng
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yanghua Shi
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Lanyang Li
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chen Wang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jian Zhang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Mingjie Rong
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jiping Liu
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Bangjiang Fang
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
2
|
Cerebral Organoids-Challenges to Establish a Brain Prototype. Cells 2021; 10:cells10071790. [PMID: 34359959 PMCID: PMC8306666 DOI: 10.3390/cells10071790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
The new cellular models based on neural cells differentiated from induced pluripotent stem cells have greatly enhanced our understanding of human nervous system development. Highly efficient protocols for the differentiation of iPSCs into different types of neural cells have allowed the creation of 2D models of many neurodegenerative diseases and nervous system development. However, the 2D culture of neurons is an imperfect model of the 3D brain tissue architecture represented by many functionally active cell types. The development of protocols for the differentiation of iPSCs into 3D cerebral organoids made it possible to establish a cellular model closest to native human brain tissue. Cerebral organoids are equally suitable for modeling various CNS pathologies, testing pharmacologically active substances, and utilization in regenerative medicine. Meanwhile, this technology is still at the initial stage of development.
Collapse
|
3
|
Serruya MD, Rosenwasser RH. An artificial nervous system to treat chronic stroke. Artif Organs 2021; 45:804-812. [PMID: 34156104 DOI: 10.1111/aor.13998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023]
Abstract
Despite remarkable advances in the treatment of numerous medical conditions, neurological disease and injury remains an outstanding challenge and cause of disability worldwide. The decreased regenerative capacity and extreme complexity and heterogeneity of nervous tissue, in particular the brain, and the fact that the brain remains the least understood organ, have hampered our ability to provide definitive treatments for prevalent conditions such as stroke. Stroke is the second-leading cause of death worldwide, and the nervous system is intimately involved in other prevalent conditions including ischemic heart disease, diabetes mellitus, and hypertension. Advances in neuromodulation, electroceuticals, microsurgical techniques, optogenetics, brain-computer interfaces, and autologous constructs offer potential solutions to address the otherwise permanent neurological deficits of stroke and other conditions. Here we review these various approaches to build an "artificial nervous system" that could restore function and independence in people living with these conditions. We focus on stroke both because it is the leading cause of neurological disability worldwide and because we anticipate that advances in the reversal of stroke-related deficits will have ripple effects benefiting people with other neurological conditions including spinal cord injury, traumatic brain injury, ALS, and muscular dystrophy.
Collapse
Affiliation(s)
- Mijail D Serruya
- Department of Neurology, Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert H Rosenwasser
- Department of Neurosurgery, Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Lensink MA, Boers SN, M Gulmans VA, Jongsma KR, Bredenoord AL. Mini-gut feelings: perspectives of people with cystic fibrosis on the ethics and governance of organoid biobanking. Per Med 2021; 18:241-254. [PMID: 33825546 DOI: 10.2217/pme-2020-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aim: Organoid technology has enormous potential for precision medicine, such as has recently been demonstrated in the field of cystic fibrosis. However, storage and use of organoids has been associated with ethical challenges and there is currently a lack of harmony in regulation and guidelines to govern the rapid emergence of 'organoid medicine'. Developing sound governance demands incorporation of the perspectives of patients as key stakeholders. Materials & methods: We conducted 17 semi-structured interviews with people with cystic fibrosis to explore their perspectives on the ethics and governance of organoid biobanking. Results: We identified three themes: prioritization of research and trust, ambivalent views on commercial involvement and transparency and control. Conclusion: Our study offers important insights for ethically robust governance of 'organoid medicine'.
Collapse
Affiliation(s)
- Michael A Lensink
- Julius Center for Health Sciences & Primary Care, Department of Medical Humanities, University Medical Center Utrecht, Internal post Str. 6.131, P.O. Box 85500, GA Utrecht 3508, The Netherlands
| | - Sarah N Boers
- Julius Center for Health Sciences & Primary Care, Department of Medical Humanities, University Medical Center Utrecht, Internal post Str. 6.131, P.O. Box 85500, GA Utrecht 3508, The Netherlands
| | - Vincent A M Gulmans
- Dutch Cystic Fibrosis Foundation (NCFS), Dr. A. Schweitzerweg 3A, MG Baarn 3744, The Netherlands
| | - Karin R Jongsma
- Julius Center for Health Sciences & Primary Care, Department of Medical Humanities, University Medical Center Utrecht, Internal post Str. 6.131, P.O. Box 85500, GA Utrecht 3508, The Netherlands
| | - Annelien L Bredenoord
- Julius Center for Health Sciences & Primary Care, Department of Medical Humanities, University Medical Center Utrecht, Internal post Str. 6.131, P.O. Box 85500, GA Utrecht 3508, The Netherlands
| |
Collapse
|
5
|
Lensink MA, Jongsma KR, Boers SN, Noordhoek JJ, Beekman JM, Bredenoord AL. Responsible use of organoids in precision medicine: the need for active participant involvement. Development 2020; 147:147/7/dev177972. [DOI: 10.1242/dev.177972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Organoids are three-dimensional multicellular structures grown in vitro from stem cells and which recapitulate some organ function. They are derivatives of living tissue that can be stored in biobanks for a multitude of research purposes. Biobank research on organoids derived from patients is highly promising for precision medicine, which aims to target treatment to individual patients. The dominant approach for protecting the interests of biobank participants emphasizes broad consent in combination with privacy protection and ex ante (predictive) ethics review. In this paradigm, participants are positioned as passive donors; however, organoid biobanking for precision medicine purposes raises challenges that we believe cannot be adequately addressed without more ongoing involvement of patient-participants. In this Spotlight, we argue why a shift from passive donation towards more active involvement is particularly crucial for biobank research on organoids aimed at precision medicine, and suggest some approaches appropriate to this context.
Collapse
Affiliation(s)
- Michael A. Lensink
- Department of Medical Humanities, University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Sarah N. Boers
- Department of Medical Humanities, University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Jacquelien J. Noordhoek
- Dutch Cystic Fibrosis Foundation (NCFS), Dr. A. Schweitzerweg 3A, 3744 MG Baarn, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center, University Medical Center, Internal post KH.01.419.0, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
6
|
Kassis T, Hernandez-Gordillo V, Langer R, Griffith LG. OrgaQuant: Human Intestinal Organoid Localization and Quantification Using Deep Convolutional Neural Networks. Sci Rep 2019; 9:12479. [PMID: 31462669 PMCID: PMC6713702 DOI: 10.1038/s41598-019-48874-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
Organoid cultures are proving to be powerful in vitro models that closely mimic the cellular constituents of their native tissue. Organoids are typically expanded and cultured in a 3D environment using either naturally derived or synthetic extracellular matrices. Assessing the morphology and growth characteristics of these cultures has been difficult due to the many imaging artifacts that accompany the corresponding images. Unlike single cell cultures, there are no reliable automated segmentation techniques that allow for the localization and quantification of organoids in their 3D culture environment. Here we describe OrgaQuant, a deep convolutional neural network implementation that can locate and quantify the size distribution of human intestinal organoids in brightfield images. OrgaQuant is an end-to-end trained neural network that requires no parameter tweaking; thus, it can be fully automated to analyze thousands of images with no user intervention. To develop OrgaQuant, we created a unique dataset of manually annotated human intestinal organoid images with bounding boxes and trained an object detection pipeline using TensorFlow. We have made the dataset, trained model and inference scripts publicly available along with detailed usage instructions.
Collapse
Affiliation(s)
- Timothy Kassis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ronit Langer
- Department Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|