1
|
Sousa JM, Appel L, Engström M, Nyholm D, Ahlström H, Lubberink M. Comparison of quantitative [ 11C]PE2I brain PET studies between an integrated PET/MR and a stand-alone PET system. Phys Med 2024; 117:103185. [PMID: 38042064 DOI: 10.1016/j.ejmp.2023.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
PET/MR systems demanded great efforts for accurate attenuation correction (AC) but differences in technology, geometry and hardware attenuation may also affect quantitative results. Dedicated PET systems using transmission-based AC are regarded as the gold standard for quantitative brain PET. The study aim was to investigate the agreement between quantitative PET outcomes from a PET/MR scanner against a stand-alone PET system. Nine patients with Parkinsonism underwent two 80-min dynamic PET scans with the dopamine transporter ligand [11C]PE2I. Images were reconstructed with resolution-matched settings using 68Ge-transmission (stand-alone PET), and zero-echo-time MR (PET/MR) scans for AC. Non-displaceable binding potential (BPND) and relative delivery (R1) were evaluated using volumes of interest and voxel-wise analysis. Correlations between systems were high (r ≥ 0.85) for both quantitative outcome parameters in all brain regions. Striatal BPND was significantly lower on PET/MR than on stand-alone PET (-7%). R1 was significantly overestimated in posterior cortical regions (9%) and underestimated in striatal (-9%) and limbic areas (-6%). The voxel-wise evaluation revealed that the MR-safe headphones caused a negative bias in both parametric BPND and R1 images. Additionally, a significant positive bias of R1 was found in the auditory cortex, most likely due to the acoustic background noise during MR imaging. The relative bias of the quantitative [11C]PE2I PET data acquired from a SIGNA PET/MR system was in the same order as the expected test-retest reproducibility of [11C]PE2I BPND and R1, compared to a stand-alone ECAT PET scanner. MR headphones and background noise are potential sources of error in functional PET/MR studies.
Collapse
Affiliation(s)
- João M Sousa
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | - Lieuwe Appel
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden; Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Mark Lubberink
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
2
|
Bogdanovic B, Solari EL, Villagran Asiares A, McIntosh L, van Marwick S, Schachoff S, Nekolla SG. PET/MR Technology: Advancement and Challenges. Semin Nucl Med 2021; 52:340-355. [PMID: 34969520 DOI: 10.1053/j.semnuclmed.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
When this article was written, it coincided with the 11th anniversary of the installation of our PET/MR device in Munich. In fact, this was the first fully integrated device to be in clinical use. During this time, we have observed many interesting behaviors, to put it kindly. However, it is more critical that in this process, our understanding of the system also improved - including the advantages and limitations from a technical, logistical, and medical perspective. The last decade of PET/MRI research has certainly been characterized by most sites looking for a "key application." There were many ideas in this context and before and after the devices became available, some of which were based on the earlier work with integrating data from single devices. These involved validating classical PET methods with MRI (eg, perfusion or oncology diagnostics). More important, however, were the scenarios where intermodal synergies could be expected. In this review, we look back on this decade-long journey, at the challenges overcome and those still to come.
Collapse
Affiliation(s)
- Borjana Bogdanovic
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Esteban Lucas Solari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alberto Villagran Asiares
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sandra van Marwick
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sylvia Schachoff
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
3
|
Puig O, Henriksen OM, Andersen FL, Lindberg U, Højgaard L, Law I, Ladefoged CN. Deep-learning-based attenuation correction in dynamic [ 15O]H 2O studies using PET/MRI in healthy volunteers. J Cereb Blood Flow Metab 2021; 41:3314-3323. [PMID: 34250821 PMCID: PMC8669198 DOI: 10.1177/0271678x211029178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantitative [15O]H2O positron emission tomography (PET) is the accepted reference method for regional cerebral blood flow (rCBF) quantification. To perform reliable quantitative [15O]H2O-PET studies in PET/MRI scanners, MRI-based attenuation-correction (MRAC) is required. Our aim was to compare two MRAC methods (RESOLUTE and DeepUTE) based on ultrashort echo-time with computed tomography-based reference standard AC (CTAC) in dynamic and static [15O]H2O-PET. We compared rCBF from quantitative perfusion maps and activity concentration distribution from static images between AC methods in 25 resting [15O]H2O-PET scans from 14 healthy men at whole-brain, regions of interest and voxel-wise levels. Average whole-brain CBF was 39.9 ± 6.0, 39.0 ± 5.8 and 40.0 ± 5.6 ml/100 g/min for CTAC, RESOLUTE and DeepUTE corrected studies respectively. RESOLUTE underestimated whole-brain CBF by 2.1 ± 1.50% and rCBF in all regions of interest (range -2.4%- -1%) compared to CTAC. DeepUTE showed significant rCBF overestimation only in the occipital lobe (0.6 ± 1.1%). Both MRAC methods showed excellent correlation on rCBF and activity concentration with CTAC, with slopes of linear regression lines between 0.97 and 1.01 and R2 over 0.99. In conclusion, RESOLUTE and DeepUTE provide AC information comparable to CTAC in dynamic [15O]H2O-PET but RESOLUTE is associated with a small but systematic underestimation.
Collapse
Affiliation(s)
- Oriol Puig
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Claes N Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Sousa JM, Appel L, Merida I, Heckemann RA, Costes N, Engström M, Papadimitriou S, Nyholm D, Ahlström H, Hammers A, Lubberink M. Accuracy and precision of zero-echo-time, single- and multi-atlas attenuation correction for dynamic [ 11C]PE2I PET-MR brain imaging. EJNMMI Phys 2020; 7:77. [PMID: 33369700 PMCID: PMC7769756 DOI: 10.1186/s40658-020-00347-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A valid photon attenuation correction (AC) method is instrumental for obtaining quantitatively correct PET images. Integrated PET/MR systems provide no direct information on attenuation, and novel methods for MR-based AC (MRAC) are still under investigation. Evaluations of various AC methods have mainly focused on static brain PET acquisitions. In this study, we determined the validity of three MRAC methods in a dynamic PET/MR study of the brain. METHODS Nine participants underwent dynamic brain PET/MR scanning using the dopamine transporter radioligand [11C]PE2I. Three MRAC methods were evaluated: single-atlas (Atlas), multi-atlas (MaxProb) and zero-echo-time (ZTE). The 68Ge-transmission data from a previous stand-alone PET scan was used as reference method. Parametric relative delivery (R1) images and binding potential (BPND) maps were generated using cerebellar grey matter as reference region. Evaluation was based on bias in MRAC maps, accuracy and precision of [11C]PE2I BPND and R1 estimates, and [11C]PE2I time-activity curves. BPND was examined for striatal regions and R1 in clusters of regions across the brain. RESULTS For BPND, ZTE-MRAC showed the highest accuracy (bias < 2%) in striatal regions. Atlas-MRAC exhibited a significant bias in caudate nucleus (- 12%) while MaxProb-MRAC revealed a substantial, non-significant bias in the putamen (9%). R1 estimates had a marginal bias for all MRAC methods (- 1.0-3.2%). MaxProb-MRAC showed the largest intersubject variability for both R1 and BPND. Standardized uptake values (SUV) of striatal regions displayed the strongest average bias for ZTE-MRAC (~ 10%), although constant over time and with the smallest intersubject variability. Atlas-MRAC had highest variation in bias over time (+10 to - 10%), followed by MaxProb-MRAC (+5 to - 5%), but MaxProb showed the lowest mean bias. For the cerebellum, MaxProb-MRAC showed the highest variability while bias was constant over time for Atlas- and ZTE-MRAC. CONCLUSIONS Both Maxprob- and ZTE-MRAC performed better than Atlas-MRAC when using a 68Ge transmission scan as reference method. Overall, ZTE-MRAC showed the highest precision and accuracy in outcome parameters of dynamic [11C]PE2I PET analysis with use of kinetic modelling.
Collapse
Affiliation(s)
- João M Sousa
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Lieuwe Appel
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rolf A Heckemann
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, King's College, London, UK
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
5
|
Abstract
Attenuation correction has been one of the main methodological challenges in the integrated positron emission tomography and magnetic resonance imaging (PET/MRI) field. As standard transmission or computed tomography approaches are not available in integrated PET/MRI scanners, MR-based attenuation correction approaches had to be developed. Aspects that have to be considered for implementing accurate methods include the need to account for attenuation in bone tissue, normal and pathological lung and the MR hardware present in the PET field-of-view, to reduce the impact of subject motion, to minimize truncation and susceptibility artifacts, and to address issues related to the data acquisition and processing both on the PET and MRI sides. The standard MR-based attenuation correction techniques implemented by the PET/MRI equipment manufacturers and their impact on clinical and research PET data interpretation and quantification are first discussed. Next, the more advanced methods, including the latest generation deep learning-based approaches that have been proposed for further minimizing the attenuation correction related bias are described. Finally, a future perspective focused on the needed developments in the field is given.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| |
Collapse
|
6
|
Cabello J, Avram M, Brandl F, Mustafa M, Scherr M, Leucht C, Leucht S, Sorg C, Ziegler SI. Impact of non-uniform attenuation correction in a dynamic [ 18F]-FDOPA brain PET/MRI study. EJNMMI Res 2019; 9:77. [PMID: 31428975 PMCID: PMC6702490 DOI: 10.1186/s13550-019-0547-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background PET (positron emission tomography) biokinetic modelling relies on accurate quantitative data. One of the main corrections required in PET imaging to obtain high quantitative accuracy is tissue attenuation correction (AC). Incorrect non-uniform PET-AC may result in local bias in the emission images, and thus in relative activity distributions and time activity curves for different regions. MRI (magnetic resonance imaging)-based AC is an active area of research in PET/MRI neuroimaging, where several groups developed in the last few years different methods to calculate accurate attenuation (μ-)maps. Some AC methods have been evaluated for different PET radioisotopes and pathologies. However, AC in PET/MRI has scantly been investigated in dynamic PET studies where the aim is to get quantitative kinetic parameters, rather than semi-quantitative parameters from static PET studies. In this work, we investigated the impact of AC accuracy in PET image absolute quantification and, more importantly, in the slope of the Patlak analysis based on the simplified reference tissue model, from a dynamic [18F]-fluorodopa (FDOPA) PET/MRI study. In the study, we considered the two AC methods provided by the vendor and an in-house AC method based on the dual ultrashort time echo MRI sequence, using as reference a multi-atlas-based AC method based on a T1-weighted MRI sequence. Results Non-uniform bias in absolute PET quantification across the brain, from − 20% near the skull to − 10% in the central region, was observed using the two vendor’s μ-maps. The AC method developed in-house showed a − 5% and 1% bias, respectively. Our study resulted in a 5–9% overestimation of the PET kinetic parameters with the vendor-provided μ-maps, while our in-house-developed AC method showed < 2% overestimation compared to the atlas-based AC method, using the cerebellar cortex as reference region. The overestimation obtained using the occipital pole as reference region resulted in a 7–10% with the vendor-provided μ-maps, while our in-house-developed AC method showed < 6% overestimation. Conclusions PET kinetic analyses based on a reference region are especially sensitive to the non-uniform bias in PET quantification from AC inaccuracies in brain PET/MRI. Depending on the position of the reference region and the bias with respect to the analysed region, kinetic analyses suffer different levels of bias. Considering bone in the μ-map can potentially result in larger errors, compared to the absence of bone, when non-uniformities in PET quantification are introduced.
Collapse
Affiliation(s)
- Jorge Cabello
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Present Address: Siemens Healthineers Molecular Imaging, Knoxville, TN, USA.
| | - Mihai Avram
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Felix Brandl
- Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mona Mustafa
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Scherr
- Klinik und Poliklinik für Psychiatrie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Universitätsklinik für Psychiatrie und Psychotherapie, Paracelsus Medical University, Salzburg, Austria
| | - Claudia Leucht
- Klinik und Poliklinik für Psychiatrie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Leucht
- Klinik und Poliklinik für Psychiatrie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Klinik und Poliklinik für Psychiatrie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sibylle I Ziegler
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Klinik und Poliklinik für Nuklearmedizin, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|