1
|
Jiang Y, Zheng M. EEG microstates are associated with music training experience. Front Hum Neurosci 2024; 18:1434110. [PMID: 39118820 PMCID: PMC11306160 DOI: 10.3389/fnhum.2024.1434110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Background Music training facilitates the development of individual cognitive functions and influences brain plasticity. A comprehensive understanding of the pathways and processes through which music affects the human brain, as well as the neurobiological mechanisms underlying human brain perception of music, is necessary to fully harness the plasticity that music offers for brain development. Aims To investigate the resting-state electroencephalogram (EEG) activity of individuals with and without music training experience, and explore the microstate patterns of EEG signals. Method In this study, an analysis of electroencephalogram (EEG) microstates from 57 participants yielded temporal parameters(mean duration, time coverage, occurrence, and transition probability)of four classic microstate categories (Categories A, B, C, and D) for two groups: those with music training experience and those without. Statistical analysis was conducted on these parameters between groups. Results The results indicate that compared to individuals without music training experience, participants with music training experience exhibit significantly longer mean durations of microstate A, which is associated with speech processing. Additionally, they show a greater time coverage of microstate B, which is associated with visual processing. Transition probabilities from microstate A to microstate B were greater in participants with music training experience compared to those without. Conversely, transition probabilities from microstate A to microstate C and from microstate C to microstate D were greater in participants without music training experience. Conclusion Our study found differences in characteristic parameters of certain microstates between individuals with and without music training experience. This suggests distinct brain activity patterns during tasks related to speech, vision, and attention regulation among individuals with varying levels of music training experience. These findings support an association between music training experience and specific neural activities. Furthermore, they endorse the hypothesis of music training experience influencing brain activity during resting states. Additionally, they imply a facilitative role of music training in tasks related to speech, vision, and attention regulation, providing initial evidence for further empirical investigation into the cognitive processes influenced by music training.
Collapse
Affiliation(s)
- Yihe Jiang
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- School of Psychology, Southwest University, Chongqing, China
| | - Maoping Zheng
- School of Music, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Sahoo A, Tayade P, Muthukrishnan SP, Kaur S, Sharma R, Nayyar M. Effect of short-term exposure to Raag Bilawal of North Indian classical music on young Indian adults: a high-density electroencephalogram microstate study. Pan Afr Med J 2024; 48:24. [PMID: 39220561 PMCID: PMC11364891 DOI: 10.11604/pamj.2024.48.24.40977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/09/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction the objective of the study was to find out the microstate map topographies and their parameters generated during the resting state and during listening to North Indian classical Music Raag 'the Raag Bilawal'. It was hypothesized that in the resting state and during listening to music conditions, there would be a difference in microstate parameters i.e. mean duration, global explained variance (GEV), and time coverage. Methods a 128-channel electroencephalogram (EEG) was recorded for 12 Indian subjects (average age 26.1+1.4 years) while resting and listening to music using the EEG microstate investigation. Investigation and comparison of the microstate parameters were the mean duration, global explained variance (GEV), and time coverage between both conditions were performed. Results seven microstate maps were found to represent the resting state and listening to music condition, four canonical and three novel maps. No statistically significant difference was found between the two conditions for time coverage and mean duration. The statistical significance levels of the map-1, map-2, map-3, map-4, map-5, map-6, and map-7 for the mean duration were 0.4, 0.6, 0.97, 0.34, 0.32, 0.69, and 0.29 respectively; and for time coverage were 0.92, 0.92, 0.96, 0.64, 0.78, 0.38, and 0.76 respectively. Map-1, map-4, and map-7 were the three novel maps we found in our study. Conclusion similarities regarding stability and predominance of maps with small vulnerability exist in both conditions indicating that phonological, visual, and dorsal attention networks may be activated in both resting state and listening to music condition.
Collapse
Affiliation(s)
- Abhisek Sahoo
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Tayade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Simran Kaur
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhavi Nayyar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Papadaki E, Koustakas T, Werner A, Lindenberger U, Kühn S, Wenger E. Resting-state functional connectivity in an auditory network differs between aspiring professional and amateur musicians and correlates with performance. Brain Struct Funct 2023; 228:2147-2163. [PMID: 37792073 PMCID: PMC10587189 DOI: 10.1007/s00429-023-02711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
Auditory experience-dependent plasticity is often studied in the domain of musical expertise. Available evidence suggests that years of musical practice are associated with structural and functional changes in auditory cortex and related brain regions. Resting-state functional magnetic resonance imaging (MRI) can be used to investigate neural correlates of musical training and expertise beyond specific task influences. Here, we compared two groups of musicians with varying expertise: 24 aspiring professional musicians preparing for their entrance exam at Universities of Arts versus 17 amateur musicians without any such aspirations but who also performed music on a regular basis. We used an interval recognition task to define task-relevant brain regions and computed functional connectivity and graph-theoretical measures in this network on separately acquired resting-state data. Aspiring professionals performed significantly better on all behavioral indicators including interval recognition and also showed significantly greater network strength and global efficiency than amateur musicians. Critically, both average network strength and global efficiency were correlated with interval recognition task performance assessed in the scanner, and with an additional measure of interval identification ability. These findings demonstrate that task-informed resting-state fMRI can capture connectivity differences that correspond to expertise-related differences in behavior.
Collapse
Affiliation(s)
- Eleftheria Papadaki
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
- International Max Planck Research School on the Life Course (LIFE), Berlin, Germany.
| | - Theodoros Koustakas
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - André Werner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, London, UK
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Neuronal Plasticity Working Group, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Wenger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| |
Collapse
|
4
|
Chabin T, Pazart L, Gabriel D. Vocal melody and musical background are simultaneously processed by the brain for musical predictions. Ann N Y Acad Sci 2022; 1512:126-140. [PMID: 35229293 DOI: 10.1111/nyas.14755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
Musical pleasure is related to the capacity to predict and anticipate the music. By recording early cerebral responses of 16 participants with electroencephalography during periods of silence inserted in known and unknown songs, we aimed to measure the contribution of different musical attributes to musical predictions. We investigated the mismatch between past encoded musical features and the current sensory inputs when listening to lyrics associated with vocal melody, only background instrumental material, or both attributes grouped together. When participants were listening to chords and lyrics for known songs, the brain responses related to musical violation produced event-related potential responses around 150-200 ms that were of a larger amplitude than for chords or lyrics only. Microstate analysis also revealed that for chords and lyrics, the global field power had an increased stability and a longer duration. The source localization identified that the right superior temporal and frontal gyri and the inferior and medial frontal gyri were activated for a longer time for chords and lyrics, likely caused by the increased complexity of the stimuli. We conclude that grouped together, a broader integration and retrieval of several musical attributes at the same time recruit larger neuronal networks that lead to more accurate predictions.
Collapse
Affiliation(s)
- Thibault Chabin
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France
| | - Lionel Pazart
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Bourgogne Franche-Comté, France
| | - Damien Gabriel
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
5
|
James CE, Altenmüller E, Kliegel M, Krüger THC, Van De Ville D, Worschech F, Abdili L, Scholz DS, Jünemann K, Hering A, Grouiller F, Sinke C, Marie D. Train the brain with music (TBM): brain plasticity and cognitive benefits induced by musical training in elderly people in Germany and Switzerland, a study protocol for an RCT comparing musical instrumental practice to sensitization to music. BMC Geriatr 2020; 20:418. [PMID: 33087078 PMCID: PMC7576734 DOI: 10.1186/s12877-020-01761-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent data suggest that musical practice prevents age-related cognitive decline. But experimental evidence remains sparse and no concise information on the neurophysiological bases exists, although cognitive decline represents a major impediment to healthy aging. A challenge in the field of aging is developing training regimens that stimulate neuroplasticity and delay or reverse symptoms of cognitive and cerebral decline. To be successful, these regimens should be easily integrated in daily life and intrinsically motivating. This study combines for the first-time protocolled music practice in elderly with cutting-edge neuroimaging and behavioral approaches, comparing two types of musical education. METHODS We conduct a two-site Hannover-Geneva randomized intervention study in altogether 155 retired healthy elderly (64-78) years, (63 in Geneva, 92 in Hannover), offering either piano instruction (experimental group) or musical listening awareness (control group). Over 12 months all participants receive weekly training for 1 hour, and exercise at home for ~ 30 min daily. Both groups study different music styles. Participants are tested at 4 time points (0, 6, and 12 months & post-training (18 months)) on cognitive and perceptual-motor aptitudes as well as via wide-ranging functional and structural neuroimaging and blood sampling. DISCUSSION We aim to demonstrate positive transfer effects for faculties traditionally described to decline with age, particularly in the piano group: executive functions, working memory, processing speed, abstract thinking and fine motor skills. Benefits in both groups may show for verbal memory, hearing in noise and subjective well-being. In association with these behavioral benefits we anticipate functional and structural brain plasticity in temporal (medial and lateral), prefrontal and parietal areas and the basal ganglia. We intend exhibiting for the first time that musical activities can provoke important societal impacts by diminishing cognitive and perceptual-motor decline supported by functional and structural brain plasticity. TRIAL REGISTRATION The Ethikkomission of the Leibniz Universität Hannover approved the protocol on 14.08.17 (no. 3604-2017), the neuroimaging part and blood sampling was approved by the Hannover Medical School on 07.03.18. The full protocol was approved by the Commission cantonale d'éthique de la recherche de Genève (no. 2016-02224) on 27.02.18 and registered at clinicaltrials.gov on 17.09.18 ( NCT03674931 , no. 81185).
Collapse
Affiliation(s)
- Clara E James
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland. .,Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Genève, Switzerland
| | - Tillmann H C Krüger
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Dimitri Van De Ville
- Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015, Lausanne, Switzerland.,Faculty of Medecine of the University of Geneva, Switzerland, Campus Biotech, Chemin des Mines 9, 1211, Geneva, Switzerland
| | - Florian Worschech
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Laura Abdili
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - Daniel S Scholz
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Kristin Jünemann
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alexandra Hering
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Genève, Switzerland
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland. Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
| | - Christopher Sinke
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Damien Marie
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| |
Collapse
|
6
|
Ribeiro FS, Santos FH. Persistent Effects of Musical Training on Mathematical Skills of Children With Developmental Dyscalculia. Front Psychol 2020; 10:2888. [PMID: 31998179 PMCID: PMC6965363 DOI: 10.3389/fpsyg.2019.02888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/05/2019] [Indexed: 11/26/2022] Open
Abstract
Musical training (MT) is perceived as a multi-sensory program that simultaneously integrates visual, aural, oral, and kinesthetic senses. Furthermore, MT stimulates cognitive functions in a ludic way instead of tapping straight into the traditional context of school learning, including mathematics. Nevertheless, the efficacy of MT over mathematics remains understudied, especially concerning longstanding effects. For this reason, this longitudinal study explored the impact of MT on numerical cognition and abstract visual reasoning using a double-blind and quasi-experimental design. We assessed two groups of children from primary schools, namely one with developmental dyscalculia [DD; n = 22] and another comprising typically developing children [TD; n = 22], who concomitantly underwent MT. Numerical cognition measurement was carried out at four different time points: Baseline (pre-MT assessment), mid-test (after 7 weeks of MT), post-test (after 14 weeks of MT), and follow-up (10 weeks after the end of MT). Significant interactions were found between time and group for numerical cognition performance, in which the DD group showed higher scores in number comprehension, number production at mid-test, and calculation at post-test compared to baseline. A key finding was that number production, number comprehension, and calculation effects were time-resistant for the DD group since changes remained on follow-up. Moreover, no significant differences over time were found for abstract visual reasoning for both groups. In conclusion, the findings of this study showed that MT appears to be a useful tool for compensatory remediation of DD.
Collapse
Affiliation(s)
- Fabiana Silva Ribeiro
- Faculty of Education and Psychology (CEDH/HNL), Universidade Católica Portuguesa, Porto, Portugal
| | | |
Collapse
|
7
|
Coll SY, Vuichoud N, Grandjean D, James CE. Electrical Neuroimaging of Music Processing in Pianists With and Without True Absolute Pitch. Front Neurosci 2019; 13:142. [PMID: 30967751 PMCID: PMC6424903 DOI: 10.3389/fnins.2019.00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/07/2019] [Indexed: 11/24/2022] Open
Abstract
True absolute pitch (AP), labeling of pitches with semitone precision without a reference, is classically studied using isolated tones. However, AP is acquired and has its function within complex dynamic musical contexts. Here we examined event-related brain responses and underlying cerebral sources to endings of short expressive string quartets, investigating a homogeneous population of young highly trained pianists with half of them possessing true-AP. The pieces ended regularly or contained harmonic transgressions at closure that participants appraised. Given the millisecond precision of ERP analyses, this experimental plan allowed examining whether AP alters music processing at an early perceptual, or later cognitive level, or both, and which cerebral sources underlie differences with non-AP musicians. We also investigated the impact of AP on general auditory cognition. Remarkably, harmonic transgression sensitivity did not differ between AP and non-AP participants, and differences for auditory cognition were only marginal. The key finding of this study is the involvement of a microstate peaking around 60 ms after musical closure, characterizing AP participants. Concurring sources were estimated in secondary auditory areas, comprising the planum temporale, all transgression conditions collapsed. These results suggest that AP is not a panacea to become a proficient musician, but a rare perceptual feature.
Collapse
Affiliation(s)
- Sélim Yahia Coll
- Neuroscience of Emotion and Affective Dynamics Laboratory Faculty of Psychology and Educational Sciences and Swiss Centre for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Noémi Vuichoud
- Neuroscience of Emotion and Affective Dynamics Laboratory Faculty of Psychology and Educational Sciences and Swiss Centre for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Laboratory Faculty of Psychology and Educational Sciences and Swiss Centre for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Clara Eline James
- Neuroscience of Emotion and Affective Dynamics Laboratory Faculty of Psychology and Educational Sciences and Swiss Centre for Affective Sciences, University of Geneva, Geneva, Switzerland.,School of Health Sciences Geneva HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Geneva Neuroscience Center University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
De Pretto M, Deiber MP, James CE. Steady-state evoked potentials distinguish brain mechanisms of self-paced versus synchronization finger tapping. Hum Mov Sci 2018; 61:151-166. [PMID: 30098488 DOI: 10.1016/j.humov.2018.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Sensorimotor synchronization (SMS) requires aligning motor actions to external events and represents a core part of both musical and dance performances. In the current study, to isolate the brain mechanisms involved in synchronizing finger tapping with a musical beat, we compared SMS to pure self-paced finger tapping and listen-only conditions at different tempi. We analyzed EEG data using frequency domain steady-state evoked potentials (SSEPs) to identify sustained electrophysiological brain activity during repetitive tasks. Behavioral results revealed different timing modes between SMS and self-paced finger tapping, associated with distinct scalp topographies, thus suggesting different underlying brain sources. After subtraction of the listen-only brain activity, SMS was compared to self-paced finger tapping. Resulting source estimations showed stronger activation of the left inferior frontal gyrus during SMS, and stronger activation of the bilateral inferior parietal lobule during self-paced finger tapping. These results point to the left inferior frontal gyrus as a pivot for perception-action coupling. We discuss our findings in the context of the ongoing debate about SSEPs interpretation given the variety of brain events contributing to SSEPs and similar EEG frequency responses.
Collapse
Affiliation(s)
- Michael De Pretto
- Faculty of Psychology and Educational Sciences, Department of Psychology, University of Geneva, 40 Boulevard du Pont-d'Arve, CH-1211 Geneva, Switzerland; Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; School of Philosophy, Psychology and Language Sciences, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.
| | - Marie-Pierre Deiber
- Psychiatry Department, Division of Psychiatric Specialties, University Hospitals of Geneva, 20 bis rue de Lausanne, CH-1201 Geneva, Switzerland; NCCR Synapsy, 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Clara E James
- Faculty of Psychology and Educational Sciences, Department of Psychology, University of Geneva, 40 Boulevard du Pont-d'Arve, CH-1211 Geneva, Switzerland; School of Health Sciences Geneva, HES-SO University of Applied Sciences and Arts Western Switzerland, 47 Avenue de Champel, CH-1206 Geneva, Switzerland
| |
Collapse
|