1
|
Slemenšek J, Geršak J, Bratina B, van Midden VM, Pirtošek Z, Šafarič R. Wearable Online Freezing of Gait Detection and Cueing System. Bioengineering (Basel) 2024; 11:1048. [PMID: 39451423 PMCID: PMC11505507 DOI: 10.3390/bioengineering11101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
This paper presents a real-time wearable system designed to assist Parkinson's disease patients experiencing freezing of gait episodes. The system utilizes advanced machine learning models, including convolutional and recurrent neural networks, enhanced with past sample data preprocessing to achieve high accuracy, efficiency, and robustness. By continuously monitoring gait patterns, the system provides timely interventions, improving mobility and reducing the impact of freezing episodes. This paper explores the implementation of a CNN+RNN+PS machine learning model on a microcontroller-based device. The device operates at a real-time processing rate of 40 Hz and is deployed in practical settings to provide 'on demand' vibratory stimulation to patients. This paper examines the system's ability to operate with minimal latency, achieving an average detection delay of just 261 milliseconds and a freezing of gait detection accuracy of 95.1%. While patients received on-demand stimulation, the system's effectiveness was assessed by decreasing the average duration of freezing of gait episodes by 45%. These preliminarily results underscore the potential of personalized, real-time feedback systems in enhancing the quality of life and rehabilitation outcomes for patients with movement disorders.
Collapse
Affiliation(s)
- Jan Slemenšek
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia;
| | - Jelka Geršak
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia;
| | - Božidar Bratina
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (B.B.); (R.Š.)
| | - Vesna Marija van Midden
- Department of Neurology, University Clinical Center Ljubljana, 1000 Ljubljana, Slovenia; (V.M.v.M.); (Z.P.)
| | - Zvezdan Pirtošek
- Department of Neurology, University Clinical Center Ljubljana, 1000 Ljubljana, Slovenia; (V.M.v.M.); (Z.P.)
| | - Riko Šafarič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (B.B.); (R.Š.)
| |
Collapse
|
2
|
Elbatanouny H, Kleanthous N, Dahrouj H, Alusi S, Almajali E, Mahmoud S, Hussain A. Insights into Parkinson's Disease-Related Freezing of Gait Detection and Prediction Approaches: A Meta Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3959. [PMID: 38931743 PMCID: PMC11207947 DOI: 10.3390/s24123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's Disease (PD) is a complex neurodegenerative disorder characterized by a spectrum of motor and non-motor symptoms, prominently featuring the freezing of gait (FOG), which significantly impairs patients' quality of life. Despite extensive research, the precise mechanisms underlying FOG remain elusive, posing challenges for effective management and treatment. This paper presents a comprehensive meta-analysis of FOG prediction and detection methodologies, with a focus on the integration of wearable sensor technology and machine learning (ML) approaches. Through an exhaustive review of the literature, this study identifies key trends, datasets, preprocessing techniques, feature extraction methods, evaluation metrics, and comparative analyses between ML and non-ML approaches. The analysis also explores the utilization of cueing devices. The limited adoption of explainable AI (XAI) approaches in FOG prediction research represents a significant gap. Improving user acceptance and comprehension requires an understanding of the logic underlying algorithm predictions. Current FOG detection and prediction research has a number of limitations, which are identified in the discussion. These include issues with cueing devices, dataset constraints, ethical and privacy concerns, financial and accessibility restrictions, and the requirement for multidisciplinary collaboration. Future research avenues center on refining explainability, expanding and diversifying datasets, adhering to user requirements, and increasing detection and prediction accuracy. The findings contribute to advancing the understanding of FOG and offer valuable guidance for the development of more effective detection and prediction methodologies, ultimately benefiting individuals affected by PD.
Collapse
Affiliation(s)
- Hagar Elbatanouny
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | | | - Hayssam Dahrouj
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Sundus Alusi
- The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK;
| | - Eqab Almajali
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Soliman Mahmoud
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
- University of Khorfakkan, Khorfakkan, Sharjah 18119, United Arab Emirates
| | - Abir Hussain
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| |
Collapse
|
3
|
Liu Y, Zhu R, Zhou Y, Lü J, Chai Y. Improved control effect of pathological oscillations by using delayed feedback stimulation in neural mass model with pedunculopontine nucleus. Brain Behav 2023; 13:e3183. [PMID: 37533306 PMCID: PMC10570496 DOI: 10.1002/brb3.3183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The role of delayed feedback stimulation in the discussion of Parkinson's disease (PD) has recently received increasing attention. Stimulation of pedunculopontine nucleus (PPN) is an emerging treatment for PD. However, the effect of PPN in regulating PD is ignored, and the delayed feedback stimulation algorithm is facing some problems in parameter selection. METHODS On the basis of a neural mass model, we established a new network for PPN. Four types of delayed feedback stimulation schemes were designed, such as stimulating subthalamic nucleus (STN) with the local field potentials (LFPs) of STN nucleus, globus pallidus (GPe) with the LFPs of Gpe nucleus, PPN with the LFPs of Gpe nucleus, and STN with the LFPs of PPN nucleus. RESULTS In this study, we found that all four kinds of delayed feedback schemes are effective, suggesting that the algorithm is simple and more effective in experiments. More specifically, the other three control schemes improved the control performance and reduced the stimulation energy expenditure compared with traditional stimulating STN itself only. CONCLUSION PPN stimulation can affect the new network and help to suppress pathological oscillations for each neuron. We hope that our results can gain an insight into the future clinical treatment.
Collapse
Affiliation(s)
- Yingpeng Liu
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| | - Rui Zhu
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| | - Ye Zhou
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| | - Jiali Lü
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| | - Yuan Chai
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| |
Collapse
|
4
|
Kola S, Rangam RP, Kandadai RM, Alugolu R, Kedasi R, Swamygowda P, Prasad VVSRK, Meka SSL, Fathima ST, Borgohain R. Changes in Optimal Stimulation Frequency with Time for Gait Disturbances in Patients with PD after STN-DBS-A Longitudinal Study. Ann Indian Acad Neurol 2023; 26:401-407. [PMID: 37970314 PMCID: PMC10645258 DOI: 10.4103/aian.aian_95_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 11/17/2023] Open
Abstract
Aim To assess the changes in frequency parameters of STN-DBS stimulation over 6 months required to optimize gait in PD patients. Methods It's a single center, open label longitudinal study of PD patients after STN-DBS with gait disorders. Gait assessment using stand-walk-sit (SWS) test and freezing of gait (FOG) scores were done at baseline and after 6 months. Gait was assessed in five frequencies settings, that is, 60 Hz, 90 Hz, 130 Hz, 180 Hz and stimulation "OFF" during medication ON state. Voltage was maintained. Results Fifteen post-deep brain stimulation (DBS) patients were included. Mean duration after surgery was 3.73 ± 2.82 years. In SWS and FOG at baseline, five patients have good response at 180 Hz frequency, five at 130 Hz, one at 90 Hz, two patients at 60 Hz, one both 60 and 90 Hz, and one at both 90 and 180 HZ. And after 6 months out of the 13 patients who were able to perform the test, four patients had good response at 180 Hz frequency, four at 130 Hz, two at 90 Hz, one each for 60 Hz and battery OFF state, and one for both 130 Hz and 180 Hz. At 6 months, four patients had good response at the same frequency as baseline, while 11 patients have change in frequency from baseline. Conclusion Optimal frequency for gait varies in patients-both low and high frequency may be useful. Optimal frequency for improving gait changes over period of time. Regular assessment and changing frequency may improve gait after DBS.
Collapse
Affiliation(s)
- Sruthi Kola
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Ravi Prakash Rangam
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | | | - Rajesh Alugolu
- Department of Neurosurgery, Citi Neuro Centre, Telangana, India
| | - Raghuram Kedasi
- Department of Neurosurgery, Nizam’s Institute of Medical Sciences (NIMS), Telangana, India
| | - Pavan Swamygowda
- Department of Neurosurgery, Nizam’s Institute of Medical Sciences (NIMS), Telangana, India
| | - VVSRK Prasad
- Department of Neurology, Citi Neuro Centre, Telangana, India
| | - Sai Sri Lakshmi Meka
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Syed T. Fathima
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Rupam Borgohain
- Department of Neurology, Citi Neuro Centre, Telangana, India
| |
Collapse
|
5
|
Zhang W, Han Y, Shi Y, Yan S, Song W, Cui G, Xiang J. Effects of wearable visual cueing on gait pattern and stability in patients with Parkinson’s disease. Front Neurol 2023; 14:1077871. [PMID: 37064198 PMCID: PMC10091618 DOI: 10.3389/fneur.2023.1077871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
The present study examined the effects of wearable visual cues, provided by a wearable laser device, on the gait pattern and stability in patients with Parkinson’s disease (PD). In total, 18 patients with a clinical diagnosis of idiopathic PD (Hoehn and Yahr stage II-III) and 18 healthy controls were included. The main outcome measures included spatiotemporal parameters, sagittal plane kinematic parameters of joints in lower limbs, and dynamic center of pressure (COP) parameters. Significant intra-group improvement in gait parameters was observed in PD patients. Compared with that at baseline, the gait pattern improved in PD patients under the cued condition, with longer stride length and higher toe clearance, as well as shortening of double stance phase, especially the stride length, double stance phase and toe clearance were not significantly different between cued condition and healthy control groups. In kinematics, the ankle peak dorsiflexion in swing phase and the hip range of motion (ROM) in gait cycle was significantly improved in PD patients with visual cues and close to healthy controls. Decreased anteroposterior (AP) position of COP improved gait stability in patients with PD under the cued condition. Multiple linear regression analysis showed that the AP position has a negative correlation with ankle peak dorsiflexion in swing phase. Pearson’s correlation coefficients showed that the minimum toe clearance (Mini TC) was positively correlated with the ankle peak dorsiflexion in swing phase. The immediate effect of wearable visual cues improved the gait pattern and stability in PD patients, suggesting that it may be effective when applied as an alternative technique in rehabilitation training for PD patients.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, Suining County People’s Hospital, Xuzhou, Jiangsu, China
| | - Yun Han
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanyuan Shi
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shilei Yan
- The First Clinical Medicine College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenjing Song
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Guiyun Cui,
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jie Xiang,
| |
Collapse
|
6
|
Razmkon A, Abdollahifard S, Taherifard E, Roshanshad A, Shahrivar K. Effect of deep brain stimulation on freezing of gait in patients with Parkinson's disease: a systematic review. Br J Neurosurg 2023; 37:3-11. [PMID: 35603983 DOI: 10.1080/02688697.2022.2077308] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Freezing of gait (FOG) is a disabling gait disorder in patients with Parkinson's disease (PD), characterized by recurrent episodes of halting steps. Dopaminergic drugs are common treatments for PD and FOG; however, these drugs may worsen FOG. Deep brain stimulation (DBS) is another option used to treat selected patients. The device needs to be programmed at a specific frequency, amplitude, and pulse width to achieve optimum effects for each patient. This systematic review aimed to evaluate the efficacy of DBS for FOG and its correlation with programmed parameters and the location of the electrodes in the brain. MATERIALS AND METHODS Data for this systematic review were gathered from five online databases: Medline (via PubMed), Scopus, Embase, Web of Science, and Cochrane Library (including both Cochrane Reviews and Cochrane Trials) with a broad search strategy. We included those articles that reported clinical trials and a specific measurement for FOG. RESULTS This review included 13 studies of DBS that targeted the subthalamic nucleus (STN), substantia nigra (SNr), or pedunculopontine nucleus (PPN). Our analysis showed that low-frequency stimulation (LFS) was superior to high-frequency stimulation (HFS) for improving FOG. In the long term, the efficacy of both LFS and HFS decreased. The effect of amplitude was variable, and this parameter needed to be adjusted for each patient. Bilateral stimulation was better than unilateral stimulation. CONCLUSION DBS is a promising choice for the treatment of severe FOG in patients with PD. Bilateral, low-frequency stimulation combined with medical therapy is associated with better responses, especially in the first 2 years of treatment. However, individualizing the DBS parameters should be considered to optimize treatment response.
Collapse
Affiliation(s)
- Ali Razmkon
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Unite de Recherche Clinique du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Saeed Abdollahifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Unite de Recherche Clinique du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Erfan Taherifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Department of Master Public Health (MPH), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Roshanshad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Master Public Health (MPH), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamyab Shahrivar
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Fujikawa J, Morigaki R, Yamamoto N, Nakanishi H, Oda T, Izumi Y, Takagi Y. Diagnosis and Treatment of Tremor in Parkinson's Disease Using Mechanical Devices. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010078. [PMID: 36676025 PMCID: PMC9863142 DOI: 10.3390/life13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Parkinsonian tremors are sometimes confused with essential tremors or other conditions. Recently, researchers conducted several studies on tremor evaluation using wearable sensors and devices, which may support accurate diagnosis. Mechanical devices are also commonly used to treat tremors and have been actively researched and developed. Here, we aimed to review recent progress and the efficacy of the devices related to Parkinsonian tremors. METHODS The PubMed and Scopus databases were searched for articles. We searched for "Parkinson disease" and "tremor" and "device". RESULTS Eighty-six articles were selected by our systematic approach. Many studies demonstrated that the diagnosis and evaluation of tremors in patients with PD can be done accurately by machine learning algorithms. Mechanical devices for tremor suppression include deep brain stimulation (DBS), electrical muscle stimulation, and orthosis. In recent years, adaptive DBS and optimization of stimulation parameters have been studied to further improve treatment efficacy. CONCLUSIONS Due to developments using state-of-the-art techniques, effectiveness in diagnosing and evaluating tremor and suppressing it using these devices is satisfactorily high in many studies. However, other than DBS, no devices are in practical use. To acquire high-level evidence, large-scale studies and randomized controlled trials are needed for these devices.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Parkinson’s Disease and Dystonia Research Center, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Correspondence: ; Tel.: +81-88-633-7149
| | - Nobuaki Yamamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Beauty Life Corporation, 2 Kiba-Cho, Minato-Ku, Nagoya 455-0021, Aichi, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Yuishin Izumi
- Parkinson’s Disease and Dystonia Research Center, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| |
Collapse
|
8
|
Zhang LL, Zhao YJ, Zhang L, Wang XP. Experience of diagnosis and managements for patients with primary progressive freezing of gait. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Zamora M, Toth R, Morgante F, Ottaway J, Gillbe T, Martin S, Lamb G, Noone T, Benjaber M, Nairac Z, Sehgal D, Constandinou TG, Herron J, Aziz TZ, Gillbe I, Green AL, Pereira EAC, Denison T. DyNeuMo Mk-1: Design and pilot validation of an investigational motion-adaptive neurostimulator with integrated chronotherapy. Exp Neurol 2022; 351:113977. [PMID: 35016994 PMCID: PMC7612891 DOI: 10.1016/j.expneurol.2022.113977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
There is growing interest in using adaptive neuromodulation to provide a more personalized therapy experience that might improve patient outcomes. Current implant technology, however, can be limited in its adaptive algorithm capability. To enable exploration of adaptive algorithms with chronic implants, we designed and validated the 'Picostim DyNeuMo Mk-1' (DyNeuMo Mk-1 for short), a fully-implantable, adaptive research stimulator that titrates stimulation based on circadian rhythms (e.g. sleep, wake) and the patient's movement state (e.g. posture, activity, shock, free-fall). The design leverages off-the-shelf consumer technology that provides inertial sensing with low-power, high reliability, and relatively modest cost. The DyNeuMo Mk-1 system was designed, manufactured and verified using ISO 13485 design controls, including ISO 14971 risk management techniques to ensure patient safety, while enabling novel algorithms. The system was validated for an intended use case in movement disorders under an emergency-device authorization from the Medicines and Healthcare Products Regulatory Agency (MHRA). The algorithm configurability and expanded stimulation parameter space allows for a number of applications to be explored in both central and peripheral applications. Intended applications include adaptive stimulation for movement disorders, synchronizing stimulation with circadian patterns, and reacting to transient inertial events such as posture changes, general activity, and walking. With appropriate design controls in place, first-in-human research trials are now being prepared to explore the utility of automated motion-adaptive algorithms.
Collapse
Affiliation(s)
- Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom; MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom; Department of Neurosurgery, Atkinson Morley Regional Neurosciences Centre, St George's Hospital, London, United Kingdom
| | | | - Tom Gillbe
- Bioinduction Ltd., Bristol, United Kingdom
| | - Sean Martin
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Guy Lamb
- Bioinduction Ltd., Bristol, United Kingdom
| | - Tara Noone
- Bioinduction Ltd., Bristol, United Kingdom
| | - Moaad Benjaber
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom; MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Zachary Nairac
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - Devang Sehgal
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - Timothy G Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom; Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| | - Jeffrey Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Alexander L Green
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Erlick A C Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom; Department of Neurosurgery, Atkinson Morley Regional Neurosciences Centre, St George's Hospital, London, United Kingdom
| | - Timothy Denison
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom; MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
10
|
Fujikawa J, Morigaki R, Yamamoto N, Oda T, Nakanishi H, Izumi Y, Takagi Y. Therapeutic Devices for Motor Symptoms in Parkinson’s Disease: Current Progress and a Systematic Review of Recent Randomized Controlled Trials. Front Aging Neurosci 2022; 14:807909. [PMID: 35462692 PMCID: PMC9020378 DOI: 10.3389/fnagi.2022.807909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pharmacotherapy is the first-line treatment option for Parkinson’s disease, and levodopa is considered the most effective drug for managing motor symptoms. However, side effects such as motor fluctuation and dyskinesia have been associated with levodopa treatment. For these conditions, alternative therapies, including invasive and non-invasive medical devices, may be helpful. This review sheds light on current progress in the development of devices to alleviate motor symptoms in Parkinson’s disease. Methods We first conducted a narrative literature review to obtain an overview of current invasive and non-invasive medical devices and thereafter performed a systematic review of recent randomized controlled trials (RCTs) of these devices. Results Our review revealed different characteristics of each device and their effectiveness for motor symptoms. Although invasive medical devices are usually highly effective, surgical procedures can be burdensome for patients and have serious side effects. In contrast, non-pharmacological/non-surgical devices have fewer complications. RCTs of non-invasive devices, especially non-invasive brain stimulation and mechanical peripheral stimulation devices, have proven effectiveness on motor symptoms. Nearly no non-invasive devices have yet received Food and Drug Administration certification or a CE mark. Conclusion Invasive and non-invasive medical devices have unique characteristics, and several RCTs have been conducted for each device. Invasive devices are more effective, while non-invasive devices are less effective and have lower hurdles and risks. It is important to understand the characteristics of each device and capitalize on these.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- *Correspondence: Ryoma Morigaki,
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
11
|
Bohnen NI, Costa RM, Dauer WT, Factor SA, Giladi N, Hallett M, Lewis SJ, Nieuwboer A, Nutt JG, Takakusaki K, Kang UJ, Przedborski S, Papa SM. Discussion of Research Priorities for Gait Disorders in Parkinson's Disease. Mov Disord 2021; 37:253-263. [PMID: 34939221 PMCID: PMC10122497 DOI: 10.1002/mds.28883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Gait and balance abnormalities develop commonly in Parkinson's disease and are among the motor symptoms most disabling and refractory to dopaminergic or other treatments, including deep brain stimulation. Efforts to develop effective therapies are challenged by limited understanding of these complex disorders. There is a major need for novel and appropriately targeted research to expedite progress in this area. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society has charged a panel of experts in the field to consider the current knowledge gaps and determine the research routes with highest potential to generate groundbreaking data. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicolaas I. Bohnen
- Departments of Radiology and Neurology University of Michigan and VA Ann Arbor Healthcare System Ann Arbor Michigan USA
| | - Rui M. Costa
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute Columbia University New York New York USA
| | - William T. Dauer
- Departments of Neurology and Neuroscience The Peter O'Donnell Jr. Brain Institute, UT Southwestern Dallas Texas USA
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program Emory University School of Medicine Atlanta Georgia USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel‐Aviv Sourasky Medical Center, Sackler School of Medicine and Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Mark Hallett
- Human Motor Control Section National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda Maryland USA
| | - Simon J.G. Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences University of Sydney Sydney New South Wales Australia
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences KU Leuven Leuven Belgium
| | - John G. Nutt
- Movement Disorder Section, Department of Neurology Oregon Health & Science University Portland Oregon USA
| | - Kaoru Takakusaki
- Department of Physiology, Section of Neuroscience Asahikawa Medical University Asahikawa Japan
| | - Un Jung Kang
- Departments of Neurology, Neuroscience, and Physiology Neuroscience Institute, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, The Parekh Center for Interdisciplinary Neurology, New York University Grossman School of Medicine New York New York USA
| | - Serge Przedborski
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience Columbia University New York New York USA
| | - Stella M. Papa
- Department of Neurology, School of Medicine, and Yerkes National Primate Research Center Emory University Atlanta Georgia USA
| | | |
Collapse
|
12
|
Scholl JL, Espinoza AI, Rai W, Leedom M, Baugh LA, Berg-Poppe P, Singh A. Relationships between Freezing of Gait Severity and Cognitive Deficits in Parkinson's Disease. Brain Sci 2021; 11:brainsci11111496. [PMID: 34827496 PMCID: PMC8615553 DOI: 10.3390/brainsci11111496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Freezing of gait (FOG) is one of the most debilitating motor symptoms experienced by patients with Parkinson’s disease (PD), as it can lead to falls and a reduced quality of life. Evidence supports an association between FOG severity and cognitive functioning; however, results remain debatable. PD patients with (PDFOG+, n = 41) and without FOG (PDFOG–, n = 39) and control healthy subjects (n = 41) participated in this study. The NIH toolbox cognition battery, the Montreal Cognitive Assessment (MoCA), and the interval timing task were used to test cognitive domains. Measurements were compared between groups using multivariable models and adjusting for covariates. Correlation analyses, linear regression, and mediation models were applied to examine relationships among disease duration and severity, FOG severity, and cognitive functioning. Significant differences were observed between controls and PD patients for all cognitive domains. PDFOG+ and PDFOG– exhibited differences in Dimensional Change Card Sort (DCCS) test, interval timing task, and MoCA scores. After adjusting for covariates in two different models, PDFOG+ and PDFOG– differed in both MoCA and DCCS scores. In addition, significant relationships between FOG severity and cognitive function (MoCA, DCCS, and interval timing) were also found. Regression models suggest that FOG severity may be a predictor of cognitive impairment, and mediation models show the effects of cognitive impairment on the relationship between disease severity and FOG severity. Overall, this study provides insight into the relationship between cognitive and FOG severity in patients with PD, which could aid in the development of therapeutic interventions to manage both.
Collapse
Affiliation(s)
- Jamie L. Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.); (L.A.B.)
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD 57069, USA;
| | | | - Wijdan Rai
- Department of Neurosciences, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA;
| | | | - Lee A. Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.); (L.A.B.)
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD 57069, USA;
| | - Patti Berg-Poppe
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD 57069, USA;
- Department of Physical Therapy, University of South Dakota, Vermillion, SD 57069, USA
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.); (L.A.B.)
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD 57069, USA;
- Correspondence:
| |
Collapse
|
13
|
Rahimpour S, Gaztanaga W, Yadav AP, Chang SJ, Krucoff MO, Cajigas I, Turner DA, Wang DD. Freezing of Gait in Parkinson's Disease: Invasive and Noninvasive Neuromodulation. Neuromodulation 2021; 24:829-842. [PMID: 33368872 PMCID: PMC8233405 DOI: 10.1111/ner.13347] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Freezing of gait (FoG) is one of the most disabling yet poorly understood symptoms of Parkinson's disease (PD). FoG is an episodic gait pattern characterized by the inability to step that occurs on initiation or turning while walking, particularly with perception of tight surroundings. This phenomenon impairs balance, increases falls, and reduces the quality of life. MATERIALS AND METHODS Clinical-anatomical correlations, electrophysiology, and functional imaging have generated several mechanistic hypotheses, ranging from the most distal (abnormal central pattern generators of the spinal cord) to the most proximal (frontal executive dysfunction). Here, we review the neuroanatomy and pathophysiology of gait initiation in the context of FoG, and we discuss targets of central nervous system neuromodulation and their outcomes so far. The PubMed database was searched using these key words: neuromodulation, freezing of gait, Parkinson's disease, and gait disorders. CONCLUSION Despite these investigations, the pathogenesis of this process remains poorly understood. The evidence presented in this review suggests FoG to be a heterogenous phenomenon without a single unifying pathologic target. Future studies rigorously assessing targets as well as multimodal approaches will be essential to define the next generation of therapeutic treatments.
Collapse
Affiliation(s)
- Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Wendy Gaztanaga
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amol P. Yadav
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephano J. Chang
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
- Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dennis A. Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Departments of Neurobiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Doris D. Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Bikias T, Iakovakis D, Hadjidimitriou S, Charisis V, Hadjileontiadis LJ. DeepFoG: An IMU-Based Detection of Freezing of Gait Episodes in Parkinson's Disease Patients via Deep Learning. Front Robot AI 2021; 8:537384. [PMID: 34113654 PMCID: PMC8185568 DOI: 10.3389/frobt.2021.537384] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Freezing of Gait (FoG) is a movement disorder that mostly appears in the late stages of Parkinson’s Disease (PD). It causes incapability of walking, despite the PD patient’s intention, resulting in loss of coordination that increases the risk of falls and injuries and severely affects the PD patient’s quality of life. Stress, emotional stimulus, and multitasking have been encountered to be associated with the appearance of FoG episodes, while the patient’s functionality and self-confidence are constantly deteriorating. This study suggests a non-invasive method for detecting FoG episodes, by analyzing inertial measurement unit (IMU) data. Specifically, accelerometer and gyroscope data from 11 PD subjects, as captured from a single wrist-worn IMU sensor during continuous walking, are processed via Deep Learning for window-based detection of the FoG events. The proposed approach, namely DeepFoG, was evaluated in a Leave-One-Subject-Out (LOSO) cross-validation (CV) and 10-fold CV fashion schemes against its ability to correctly estimate the existence or not of a FoG episode at each data window. Experimental results have shown that DeepFoG performs satisfactorily, as it achieves 83%/88% and 86%/90% sensitivity/specificity, for LOSO CV and 10-fold CV schemes, respectively. The promising performance of the proposed DeepFoG reveals the potentiality of single-arm IMU-based real-time FoG detection that could guide effective interventions via stimuli, such as rhythmic auditory stimulation (RAS) and hand vibration. In this way, DeepFoG may scaffold the elimination of risk of falls in PD patients, sustaining their quality of life in everyday living activities.
Collapse
Affiliation(s)
- Thomas Bikias
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Iakovakis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stelios Hadjidimitriou
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Charisis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leontios J Hadjileontiadis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Wong JK, Hu W, Barmore R, Lopes J, Moore K, Legacy J, Tahafchi P, Jackson Z, Judy JW, Raike RS, Wang A, Tsuboi T, Okun MS, Almeida L. Safety and Tolerability of Burst-Cycling Deep Brain Stimulation for Freezing of Gait in Parkinson's Disease. Front Hum Neurosci 2021; 15:651168. [PMID: 33981207 PMCID: PMC8109241 DOI: 10.3389/fnhum.2021.651168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Freezing of gait (FOG) is a common symptom in Parkinson’s disease (PD) and can be difficult to treat with dopaminergic medications or with deep brain stimulation (DBS). Novel stimulation paradigms have been proposed to address suboptimal responses to conventional DBS programming methods. Burst-cycling deep brain stimulation (BCDBS) delivers current in various frequencies of bursts (e.g., 4, 10, or 15 Hz), while maintaining an intra-burst frequency identical to conventional DBS. Objective: To evaluate the safety and tolerability of BCDBS in PD patients with FOG. Methods: Ten PD subjects with STN or GPi DBS and complaints of FOG were recruited for this single center, single blinded within-subject crossover study. For each subject, we compared 4, 10, and 15 Hz BCDBS to conventional DBS during the PD medication-OFF state. Results: There were no serious adverse events with BCDBS. It was feasible and straightforward to program BCDBS in the clinic setting. The benefit was comparable to conventional DBS in measures of FOG, functional mobility and in PD motor symptoms. BCDBS had lower battery consumption when compared to conventional DBS. Conclusions: BCDBS was feasible, safe and well tolerated and it has potential to be a viable future DBS programming strategy.
Collapse
Affiliation(s)
- Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Ryan Barmore
- Banner Health Physicians Colorado, Loveland, CO, United States
| | - Janine Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kathryn Moore
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joseph Legacy
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Parisa Tahafchi
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL, United States
| | - Zachary Jackson
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Jack W Judy
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL, United States
| | - Robert S Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Anson Wang
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Poor sleep quality is associated with cognitive, mobility, and anxiety disability that underlie freezing of gait in Parkinson's disease. Gait Posture 2021; 85:157-163. [PMID: 33578308 DOI: 10.1016/j.gaitpost.2021.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with Parkinson's disease (PD) who report freezing of gait (FOG) have poorer sleep quality than those without FOG. Cognitive, anxiety, and mobility disability are components of the FOG phenotype, however, no study has investigated if poor sleep quality is associated with all three components that underlie FOG in PD. RESEARCH QUESTION Are there associations among sleep quality and all three components of the FOG phenotype? METHODS Forty and 39 individuals with and without FOG (PD + FOG and PD-FOG), respectively, and 31 age-matched healthy controls (HC) participated in this study. Self-reported FOG (new-FOG questionnaire-NFOGQ), sleep quality (Pittsburgh Sleep Quality Index-PSQI), cognitive function (Montreal Cognitive Assessment-MoCA), anxiety (subscale from Hospital Anxiety and Depression Scale-HADS-A), and mobility (timed-up-and-go test-TUG) were assessed. RESULTS AND SIGNIFICANCE PSQI scores were correlated with the scores of NFOGQ, MoCA, HADS-A, and TUG time in PD + FOG (P ≤ 0.0038). The multiple regression analysis identified the PSQI scores as the only predictor of the variance of the NFOGQ scores (R2 = 0.46, P < .0001). The variance in the PSQI scores were explained (69 %) by MoCA scores, NFOGQ scores, TUG time, and HADS-A scores (P ≤ 0.05). Although PD + FOG had a higher disease severity compared to PD-FOG (P < 0.001), disease severity did not enter in the regression model to explain PSQI scores and NFOGQ scores. We also observed associations of PSQI scores with the MoCA scores and TUG time for HC (P ≤ 0.0038), whereas there was no association between PSQI scores and any variable in PD-FOG (P > 0.05). Finally, PD + FOG presented worse scores of PSQI, MoCA, HADS-A, and TUG time than PD-FOG and HC (P < 0.05). Thus, poor sleep quality is associated with FOG and all three components that underlie FOG, regardless of the disease severity. Therefore, treatments useful to decrease FOG should be targeted to ameliorate sleep quality, cognition, anxiety, and mobility.
Collapse
|
17
|
Smith MD, Brazier DE, Henderson EJ. Current Perspectives on the Assessment and Management of Gait Disorders in Parkinson's Disease. Neuropsychiatr Dis Treat 2021; 17:2965-2985. [PMID: 34584414 PMCID: PMC8464370 DOI: 10.2147/ndt.s304567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Gait dysfunction is a key defining feature of Parkinson's disease (PD), and is associated with symptoms of freezing and an increased risk of falls. In this narrative review, we cover the putative mechanisms of gait dysfunction in PD, the assessment of gait abnormalities, and the management of symptoms caused by the inherent difficulty in walking. Our understanding of the causes of gait problems in PD has progressed in recent times, moving from neurocognitive theory to correlates of affected neuronal pathways. In particular, this can be shown to correspond with abnormalities in responses to dual-task paradigms and dysfunction in cholinergic signaling. Great progress has been made in the sophistication and precision of gait assessment; however, it has firmly remained in the research domain. There is significant momentum behind wearable technologies that can be used by patients in their own environment, acting as digital biomarkers that can not only reflect progression but also independently discriminate PD from non-PD individuals. The treatment of gait dysfunction has historically relied on physical therapies and training combined with a view to mitigating the impact of such consequences as falls. Pharmacological therapies that are the mainstay of treatment in PD have tended to address symptoms like bradykinesia; however, optimization of dopaminergic therapies likely has a positive effect on quality of gait. Other targets have been assessed with the goal of improving gait, of which medications that improve cholinergic signaling appear most promising. Neuromodulation techniques are increasingly used in the form of deep-brain stimulation; however, standard targets, such as the globus pallidus interna, have a modest effect on gait. Considerable benefit has been seen through targeting the pedunculopontine nucleus, and a dual-target approach may be warranted. Stimulation of the spinal cord and brain through direct or magnetic approaches has been assessed, but requires further evidence.
Collapse
Affiliation(s)
- Matthew D Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Older People's Unit, Royal United Hospital NHS Foundation Trust, Bath, UK
| | - Danielle E Brazier
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emily J Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Older People's Unit, Royal United Hospital NHS Foundation Trust, Bath, UK
| |
Collapse
|
18
|
Toth R, Zamora M, Ottaway J, Gillbe T, Martin S, Benjaber M, Lamb G, Noone T, Taylor B, Deli A, Kremen V, Worrell G, Constandinou TG, Gillbe I, De Wachter S, Knowles C, Sharott A, Valentin A, Green AL, Denison T. DyNeuMo Mk-2: An Investigational Circadian-Locked Neuromodulator with Responsive Stimulation for Applied Chronobiology. CONFERENCE PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS 2020; 2020:3433-3440. [PMID: 33692611 PMCID: PMC7116879 DOI: 10.1109/smc42975.2020.9283187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deep brain stimulation (DBS) for Parkinson's disease, essential tremor and epilepsy is an established palliative treatment. DBS uses electrical neuromodulation to suppress symptoms. Most current systems provide a continuous pattern of fixed stimulation, with clinical follow-ups to refine settings constrained to normal office hours. An issue with this management strategy is that the impact of stimulation on circadian, i.e. sleep-wake, rhythms is not fully considered; either in the device design or in the clinical follow-up. Since devices can be implanted in brain targets that couple into the reticular activating network, impact on wakefulness and sleep can be significant. This issue will likely grow as new targets are explored, with the potential to create entraining signals that are uncoupled from environmental influences. To address this issue, we have designed a new brain-machine-interface for DBS that combines a slow-adaptive circadian-based stimulation pattern with a fast-acting pathway for responsive stimulation, demonstrated here for seizure management. In preparation for first-in-human research trials to explore the utility of multi-timescale automated adaptive algorithms, design and prototyping was carried out in line with ISO risk management standards, ensuring patient safety. The ultimate aim is to account for chronobiology within the algorithms embedded in brain-machine-interfaces and in neuromodulation technology more broadly.
Collapse
Affiliation(s)
- Robert Toth
- MRC Brain Network Dynamics Unit, and the Department of Engineering Science, University of Oxford, Oxford OX2 7DQ, UK
| | - Mayela Zamora
- MRC Brain Network Dynamics Unit, and the Department of Engineering Science, University of Oxford, Oxford OX2 7DQ, UK
| | | | | | - Sean Martin
- Department of Neurosurgery, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, and the Department of Engineering Science, University of Oxford, Oxford OX2 7DQ, UK
| | - Guy Lamb
- Bioinduction Ltd, Bristol BS8 4RP, UK
| | | | | | - Alceste Deli
- Department of Neurosurgery, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Vaclav Kremen
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, MN, US
| | - Gregory Worrell
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, MN, US
| | - Timothy G Constandinou
- Department of Electrical and Electronic Engineering and the UK Dementia Research Institute (Care Research and Technology Centre), Imperial College London, London SW7 2AZ, UK
| | | | - Stefan De Wachter
- Department of Urology, University of Antwerp Hospital, 2650 Edegem, Belgium
| | - Charles Knowles
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, and the Department of Engineering Science, University of Oxford, Oxford OX2 7DQ, UK
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, King's College London, London SE5 9RT, UK
| | - Alexander L Green
- Department of Neurosurgery, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, and the Department of Engineering Science, University of Oxford, Oxford OX2 7DQ, UK
| |
Collapse
|
19
|
Cao SS, Yuan XZ, Wang SH, Taximaimaiti R, Wang XP. Transverse Strips Instead of Wearable Laser Lights Alleviate the Sequence Effect Toward a Destination in Parkinson's Disease Patients With Freezing of Gait. Front Neurol 2020; 11:838. [PMID: 32903360 PMCID: PMC7434927 DOI: 10.3389/fneur.2020.00838] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background: The sequence effect (SE), referring to step-to-step reduction in amplitude, is considered to lead to freezing of gait (FOG) in Parkinson's disease (PD). Visual cues may alleviate SE and help reduce freezing episodes. FOG patients show significant SE prior to turning or toward a doorway, but the SE toward a destination has not been clearly studied. Objectives: To examine the SE when approaching a destination in PD patients with FOG, and to further explore the effects of different types of visual cues on destination SE. Methods: Thirty-five PD patients were divided into a freezing (PD+FOG, n = 15) group and a non-freezing (PD-FOG, n = 20) group. Walking trials were tested under three conditions, including without cues (no-cue condition), with wearable laser lights (laser condition), and with transverse strips placed on the floor (strip condition). Kinematic data was recorded by a portable Inertial Measurement Unit (IMU) system. The destination SE and some key gait parameters were evaluated. Results: The PD+FOG group showed greater destination SE in the no-cue and laser conditions when compared to the PD-FOG group. There were no significant differences in the strip condition when comparing destination SE of the two groups. The destination SE was alleviated only by using the transverse strips on the floor. In contrast, transverse strips and wearable laser lights could increase the step length. Conclusions: The significant destination SE may explain why FOG patients are prone to freezing when heading toward their destination. Visual cues using transverse strips on the floor may be a more effective strategy for FOG rehabilitation in PD patients.
Collapse
Affiliation(s)
- Shan-Shan Cao
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Hong Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Reyisha Taximaimaiti
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Fagiolini M, Patrizi A, LeBlanc J, Jin LW, Maezawa I, Sinnett S, Gray SJ, Molholm S, Foxe JJ, Johnston MV, Naidu S, Blue M, Hossain A, Kadam S, Zhao X, Chang Q, Zhou Z, Zoghbi H. Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience 2020; 445:190-206. [PMID: 32360592 DOI: 10.1016/j.neuroscience.2020.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
Collapse
Affiliation(s)
- Michela Fagiolini
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Annarita Patrizi
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jocelyn LeBlanc
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Way Jin
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Izumi Maezawa
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Sarah Sinnett
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael V Johnston
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Sakkubai Naidu
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Mary Blue
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Ahamed Hossain
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Shilpa Kadam
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhaolan Zhou
- Department of Genetic, Epigenetic Institute, University of Pennsylvania Perelman School of Medicine, Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Eun JD, Bang YM, Youn J, Cho JW, Kim YH, Chang WH. Feasibility of Transcranial Direct Current Stimulation in Patients with Deep Brain Stimulation: a Case Report. BRAIN & NEUROREHABILITATION 2020; 13:e13. [PMID: 36741797 PMCID: PMC9879368 DOI: 10.12786/bn.2020.13.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/08/2022] Open
Abstract
Although deep brain stimulation (DBS) has been reported to be effective to ameliorate motor and non-motor dysfunctions, freezing of gait (FoG) is often resistant to DBS in patients with Parkinson's disease (PD). Transcranial direct current stimulation (tDCS) has been reported as an alternative therapeutic strategy to ameliorate FoG in PD patients. In this case report, we describe the effects of cumulative tDCS over the primary motor cortex of the lower leg to reduce FoG in 2 cases of PD patients with DBS. Two PD patients who had undergone DBS of the subthalamic nucleus visited the rehabilitation medicine department for refractory FoG. Each patient received cumulative tDCS over the primary motor cortex of the lower leg over to reduce FoG. Neither patient required change in dose of dopaminergic medication during the tDCS period nor a significant side effect during and after tDCS. Although the FoG-questionnaire (FoG-Q) in case 1 showed no change after 10 tDCS treatments, the patient in case 2 reported a significant improvement of FoG-Q from 11 to 3 after 5 days of tDCS. We present the safety and feasibility of tDCS in PD patients with DBS who showed refractory FoG.
Collapse
Affiliation(s)
- Jong Dae Eun
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu Min Bang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Science and Technology, Department of Medical Device Management and Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Lu J, Feng Z, Shi X, Jiang L, Hao Y. Correlation between programmed stimulation parameters and their efficacy after deep brain electrode implantation for Parkinson’s disease. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2019.9040018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Purpose: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an indispensable and effective surgery for patients with primary Parkinson’s disease (PD). Nonetheless, its postoperative effects can be decided by many factors including the optimal programmed stimulation parameters. In this study, we analyzed the correlation between different postoperative programmed stimulation parameters and their efficacy after STN–DBS electrode implantation in patients with PD. Methods: A total of 87 patients underwent electrode implantation and completed at least one year follow-up. Then, various combinations of stimulation parameters, including stimulus intensity, frequency, and pulse width, were examined for their effects on the clinical improvement of the patients. Improvements in motor and nonmotor symptoms were analyzed using Mini-Mental State Examination, Parkinson’s Disease Quality of Life Questionnaire-39, and Unified Parkinson’s Disease Rating Scale (UPDRS) scores before and after surgery. Results: We found significantly improved UPDRS scores, quality of life, and neuropsychiatric symptoms postoperatively considering the findings of the aforementioned stimulation parameters compared with those observed preoperatively. Conclusion: This study provides a better understanding on how programmed stimulation parameters help relieve PD symptoms and improve quality of life in patients with PD undergoing STN–DBS.
Collapse
|
23
|
Towards Real-Time Prediction of Freezing of Gait in Patients With Parkinson's Disease: Addressing the Class Imbalance Problem. SENSORS 2019; 19:s19183898. [PMID: 31509999 PMCID: PMC6767263 DOI: 10.3390/s19183898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/06/2023]
Abstract
Freezing of gait (FoG) is a common motor symptom in patients with Parkinson's disease (PD). FoG impairs gait initiation and walking and increases fall risk. Intelligent external cueing systems implementing FoG detection algorithms have been developed to help patients recover gait after freezing. However, predicting FoG before its occurrence enables preemptive cueing and may prevent FoG. Such prediction remains challenging given the relative infrequency of freezing compared to non-freezing events. In this study, we investigated the ability of individual and ensemble classifiers to predict FoG. We also studied the effect of the ADAptive SYNthetic (ADASYN) sampling algorithm and classification cost on classifier performance. Eighteen PD patients performed a series of daily walking tasks wearing accelerometers on their ankles, with nine experiencing FoG. The ensemble classifier formed by Support Vector Machines, K-Nearest Neighbors, and Multi-Layer Perceptron using bagging techniques demonstrated highest performance (F1 = 90.7) when synthetic FoG samples were added to the training set and class cost was set as twice that of normal gait. The model identified 97.4% of the events, with 66.7% being predicted. This study demonstrates our algorithm's potential for accurate prediction of gait events and the provision of preventive cueing in spite of limited event frequency.
Collapse
|
24
|
Klempir O, Krupicka R, Mehnert J, Cejka V, Polakova K, Brozova H, Szabo Z, Ruzicka E, Jech R. Reshaping cortical activity with subthalamic stimulation in Parkinson's disease during finger tapping and gait mapped by near infrared spectroscopy. J Appl Biomed 2019; 17:157-166. [PMID: 34907697 DOI: 10.32725/jab.2019.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/19/2019] [Indexed: 11/05/2022] Open
Abstract
Exploration of motor cortex activity is essential to understanding the pathophysiology in Parkinson's Disease (PD), but only simple motor tasks can be investigated using a fMRI or PET. We aim to investigate the cortical activity of PD patients during a complex motor task (gait) to verify the impact of deep brain stimulation in the subthalamic nucleus (DBS-STN) by using Near-Infrared-Spectroscopy (NIRS). NIRS is a neuroimaging method of brain cortical activity using low-energy optical radiation to detect local changes in (de)oxyhemoglobin concentration. We used a multichannel portable NIRS during finger tapping (FT) and gait. To determine the signal activity, our methodology consisted of a pre-processing phase for the raw signal, followed by statistical analysis based on a general linear model. Processed recordings from 9 patients were statistically compared between the on and off states of DBS-STN. DBS-STN led to an increased activity in the contralateral motor cortex areas during FT. During gait, we observed a concentration of activity towards the cortex central area in the "stimulation-on" state. Our study shows how NIRS can be used to detect functional changes in the cortex of patients with PD with DBS-STN and indicates its future use for applications unsuited for PET and a fMRI.
Collapse
Affiliation(s)
- Ondrej Klempir
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Informatics, Kladno, Czech Republic
| | - Radim Krupicka
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Informatics, Kladno, Czech Republic
| | - Jan Mehnert
- University Medical Center Eppendorf, Department of Systems Neuroscience, Hamburg, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Vaclav Cejka
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Informatics, Kladno, Czech Republic.,Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| | - Kamila Polakova
- Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| | - Hana Brozova
- Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| | - Zoltan Szabo
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Informatics, Kladno, Czech Republic
| | - Evzen Ruzicka
- Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| | - Robert Jech
- Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| |
Collapse
|
25
|
Liu XD, Bao Y, Liu GJ. Comparison Between Levodopa-Carbidopa Intestinal Gel Infusion and Subthalamic Nucleus Deep-Brain Stimulation for Advanced Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2019; 10:934. [PMID: 31507529 PMCID: PMC6718716 DOI: 10.3389/fneur.2019.00934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Currently, some advanced treatments such as Levodopa-Carbidopa intestinal gel infusion (LCIG), deep-brain stimulation (DBS), and subcutaneous apomorphine infusion have become alternative strategies for advanced Parkinson's disease (PD). However, which treatment is better for individual patients remains unclear. This review aims to compare therapeutic effects of motor and/or non-motor symptoms of advanced PD patients between LCIG and DBS. Methods: We manually searched electronic databases (PubMed, Embase, Cochrane Library) and reference lists of included articles published until April 04, 2019 using related terms, without language restriction. We included case-controlled cohort studies and randomized-controlled trials, which directly compared differences between LCIG and DBS. The Newcastle-Ottawa scale (NOS), proposed by the Cochrane Collaboration, was utilized to assess the quality of the included studies. Two investigators independently extracted data from each trial. Pooled standard-mean differences (SMDs) and relative risks (RRs) with 95% confidence intervals (CIs) were calculated by meta-analysis. Outcomes were grouped according to the part III and part IV of the Unified Parkinson Disease Rating Scale (UPDRS) and adverse events. We also descriptively reviewed some data, which were unavailable for statistical analysis. Results: This review included five cohort trials of 257 patients for meta-analysis. There were no significant differences between LCIG and subthalamic nucleus deep-brain stimulation (STN-DBS) on UPDRS-III and adverse events comparisons: UPDRS-III (pooled SMDs = 0.200, 95% CI: −0.126–0.527, P = 0.230), total adverse events (pooled RRs = 1.279, 95% CI: 0.983–1.664, P = 0.067), serious adverse events (pooled RRs = 1.539, 95% CI: 0.664–3.566, P = 0.315). Notably, the improvement of UPDRS-IV was more significant in STN-DBS groups: pooled SMDs = 0.857, 95% CI: 0.130–1.584, P = 0.021. However, the heterogeneity was moderate for UPDRS-IV (I2 = 73.8%). Conclusion: LCIG has comparable effects to STN-DBS on motor function for advanced PD, with acceptable tolerability. More large, well-designed trials are needed to assess the comparability of LCIG and STN-DBS in the future.
Collapse
Affiliation(s)
- Xiao Dong Liu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi Bao
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guang Jian Liu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
26
|
Structure and function of the mesencephalic locomotor region in normal and parkinsonian primates. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Mondal B, Choudhury S, Simon B, Baker MR, Kumar H. Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson's disease. Mov Disord 2019; 34:917-918. [DOI: 10.1002/mds.27662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Banashree Mondal
- Department of Neurology and Ram Gopal Chamaria Medical Research Centre (RGC)Institute of Neurosciences Kolkata India
| | - Supriyo Choudhury
- Department of Neurology and Ram Gopal Chamaria Medical Research Centre (RGC)Institute of Neurosciences Kolkata India
| | - Bruce Simon
- ElectroCore LLC Basking Ridge New Jersey USA
| | - Mark R. Baker
- Department of NeurologyRoyal Victoria Infirmary Newcastle upon Tyne UK
- Department of Clinical NeurophysiologyRoyal Victoria Infirmary Newcastle UK
- Institute of Neurosciences, Newcastle University Newcastle upon Tyne UK
| | - Hrishikesh Kumar
- Department of Neurology and Ram Gopal Chamaria Medical Research Centre (RGC)Institute of Neurosciences Kolkata India
| |
Collapse
|
28
|
Botulinum Neurotoxin-A Injected Intrastriatally into Hemiparkinsonian Rats Improves the Initiation Time for Left and Right Forelimbs in Both Forehand and Backhand Directions. Int J Mol Sci 2019; 20:ijms20040992. [PMID: 30823527 PMCID: PMC6412467 DOI: 10.3390/ijms20040992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023] Open
Abstract
Forelimb stepping is a widely used test for the assessment of forelimb akinesia in hemiparkinsonian (hemi-PD) rats. The initiation time (IT) is considered the most sensitive parameter in the stepping test procedure. Here we propose a novel, reliable, and simple method for the measurement of IT of both forelimbs in both forehand and backhand directions in rats. Evaluating the same videos taken for quantifying adjusting steps, IT measurements were done without additional experiments. This is in contrast to the classical approach introduced by Olsson et al. (1995), in which separate experiments are necessary. We successfully applied our approach to hemi-PD rats intrastriatally treated with botulinum neurotoxin-A (BoNT-A). In naïve rats, an IT of about 0.62 s was found, and in right-sided hemi-PD rats the IT of the left forepaw increased to about 3.62 s. These hemi-PD rats showed, however, reduced ITs of the impaired left forepaws 1 month and the second time 7 months after induction of hemi-PD via the injection of 1 ng BoNT-A into the ipsilateral striatum, depending on post BoNT-A survival time. The method described offers the possibility of a precise and animal-friendly evaluation of IT in rats, including the beneficial effect of BoNT-A treatment in hemi-PD rats.
Collapse
|
29
|
Koshimori Y, Thaut MH. Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in Parkinson's disease. Ageing Res Rev 2018; 47:133-139. [PMID: 30005957 DOI: 10.1016/j.arr.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is characterized primarily by a dysfunctional basal ganglia (BG) system, producing motor and non-motor symptoms. A significant number of studies have demonstrated that rhythmic auditory stimulation can improve gait and other motor behaviors in PD that are not well managed by the conventional therapy. As music, being highly complex stimulus, can modulate brain activity/function in distributed areas of brain, the therapeutic properties of music potentially extend to alleviate non-motor symptoms of PD. Despite the clinical, behavioral evidence and promises of rhythm and music based interventions, the neural substrates underlying the effectiveness are poorly understood. The goal of this review is to appraise the current state of knowledge in order to direct further neuroimaging studies that help to determine the therapeutic effects of rhythm and music based interventions for motor and non-motor symptoms of PD.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Science Research Center, Faculty of Music and Collaborative Programs in Neuroscience, University of Toronto, 90 Wellesley Street West, Toronto, Ontario M5S 1C5, Canada.
| | - Michael H Thaut
- Music and Health Science Research Center, Faculty of Music and Collaborative Programs in Neuroscience, University of Toronto, 90 Wellesley Street West, Toronto, Ontario M5S 1C5, Canada
| |
Collapse
|
30
|
Huang C, Chu H, Ma Y, Zhou Z, Dai C, Huang X, Fang L, Ao Q, Huang D. The neuroprotective effect of deep brain stimulation at nucleus basalis of Meynert in transgenic mice with Alzheimer's disease. Brain Stimul 2018; 12:161-174. [PMID: 30181106 DOI: 10.1016/j.brs.2018.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/19/2018] [Accepted: 08/22/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia and mainly treated by drugs, while the therapeutic outcomes are very limited. This study aimed to determine the optimized parameters of deep brain stimulation (DBS) which was applied to the treatment of AD and propose the involved mechanisms. METHODS Amyloid-β precursor protein/Presenilin1 (APP/PS1) transgenic mice were used and received DBS at nucleus basalis of Meynert (NBM). The optimized parameters of DBS were determined by using different stimulation frequencies, durations and ages of mice under Morris water maze test. The involved mechanisms and the possible signal pathways were also investigated. RESULTS The optimized parameters for DBS were high frequency (100 Hz) for 21 days starting from early age (4 months old). Under the above parameters, the soluble Aβ40 and Aβ42 in the hippocampus and cortex were down-regulated significantly. DBS increased survival neurons and reduced apoptotic cells in the hippocampus and cortex. Meanwhile, the apoptosis-related proteins caspase-3, caspase-8 and Bid were down-regulated. Moreover, DBS caused a significant increase of superoxide dismutase, glutathione peroxidase and choline acetyltransferase activity as well as a decrease of methane dicarboxylic aldehyde content and acetylcholine esterase activity. Phosphorylation of Akt (p-Akt)/total Akt (t-Akt) was up-regulated while p-extracellular signal-regulated kinase 1/2 (ERK1/2)/t-ERK1/2 was down-regulated. The neuroprotective effect of DBS was attenuated by their inhibitors. CONCLUSIONS NBM-DBS starting from 4 months of age for 21 days at a high frequency (100 Hz) has therapeutic effects on AD through activating phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and inhibiting ERK1/2 pathway.
Collapse
Affiliation(s)
- Chuyi Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
| | - Heling Chu
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Mid. Wulumuqi Road, Shanghai 200040, China
| | - Yu Ma
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, No. 5 Shijingshan Road, Shijingshan District, Beijing 100049, China
| | - Zaiying Zhou
- Center for Statistical Science of Tsinghua University, Beijing 100084, China
| | - Chuanfu Dai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiaowen Huang
- Department of Orthopedics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Liang Fang
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, No. 77 Puhe Road, Shenyang Liaoning, 110122, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.
| |
Collapse
|