1
|
Hanke-Gogokhia C, Zapadka TE, Finkelstein S, Klingeborn M, Maugel TK, Singer JH, Arshavsky VY, Demb JB. The Structural and Functional Integrity of Rod Photoreceptor Ribbon Synapses Depends on Redundant Actions of Dynamins 1 and 3. J Neurosci 2024; 44:e1379232024. [PMID: 38641407 PMCID: PMC11209669 DOI: 10.1523/jneurosci.1379-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024] Open
Abstract
Vertebrate vision begins with light absorption by rod and cone photoreceptors, which transmit signals from their synaptic terminals to second-order neurons: bipolar and horizontal cells. In mouse rods, there is a single presynaptic ribbon-type active zone at which the release of glutamate occurs tonically in the dark. This tonic glutamatergic signaling requires continuous exo- and endocytosis of synaptic vesicles. At conventional synapses, endocytosis commonly requires dynamins: GTPases encoded by three genes (Dnm1-3), which perform membrane scission. Disrupting endocytosis by dynamin deletions impairs transmission at conventional synapses, but the impact of disrupting endocytosis and the role(s) of specific dynamin isoforms at rod ribbon synapses are understood incompletely. Here, we used cell-specific knock-outs (KOs) of the neuron-specific Dnm1 and Dnm3 to investigate the functional roles of dynamin isoforms in rod photoreceptors in mice of either sex. Analysis of synaptic protein expression, synapse ultrastructure, and retinal function via electroretinograms (ERGs) showed that dynamins 1 and 3 act redundantly and are essential for supporting the structural and functional integrity of rod ribbon synapses. Single Dnm3 KO showed no phenotype, and single Dnm1 KO only modestly reduced synaptic vesicle density without affecting vesicle size and overall synapse integrity, whereas double Dnm1/Dnm3 KO impaired vesicle endocytosis profoundly, causing enlarged vesicles, reduced vesicle density, reduced ERG responses, synaptic terminal degeneration, and disassembly and degeneration of postsynaptic processes. Concurrently, cone function remained intact. These results show the fundamental redundancy of dynamins 1 and 3 in regulating the structure and function of rod ribbon synapses.
Collapse
Affiliation(s)
- Christin Hanke-Gogokhia
- Departments of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut 06511
| | - Thomas E Zapadka
- Departments of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut 06511
- Cellular & Molecular Physiology, Yale University, New Haven, Connecticut 06511
| | - Stella Finkelstein
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27705
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27705
| | - Timothy K Maugel
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27705
| | - Jonathan B Demb
- Departments of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut 06511
- Cellular & Molecular Physiology, Yale University, New Haven, Connecticut 06511
- Department of Neuroscience, Yale University, New Haven, Connecticut 06511
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
2
|
Tonti E, Dell’Omo R, Filippelli M, Spadea L, Salati C, Gagliano C, Musa M, Zeppieri M. Exploring Epigenetic Modifications as Potential Biomarkers and Therapeutic Targets in Glaucoma. Int J Mol Sci 2024; 25:2822. [PMID: 38474069 PMCID: PMC10932063 DOI: 10.3390/ijms25052822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glaucoma, a complex and multifactorial neurodegenerative disorder, is a leading cause of irreversible blindness worldwide. Despite significant advancements in our understanding of its pathogenesis and management, early diagnosis and effective treatment of glaucoma remain major clinical challenges. Epigenetic modifications, encompassing deoxyribonucleic acid (DNA) methylation, histone modifications, and non-coding RNAs, have emerged as critical regulators of gene expression and cellular processes. The aim of this comprehensive review focuses on the emerging field of epigenetics and its role in understanding the complex genetic and molecular mechanisms underlying glaucoma. The review will provide an overview of the pathophysiology of glaucoma, emphasizing the intricacies of intraocular pressure regulation, retinal ganglion cell dysfunction, and optic nerve damage. It explores how epigenetic modifications, such as DNA methylation and histone modifications, can influence gene expression, and how these mechanisms are implicated in glaucomatous neurodegeneration and contribute to glaucoma pathogenesis. The manuscript discusses evidence from both animal models and human studies, providing insights into the epigenetic alterations associated with glaucoma onset and progression. Additionally, it discusses the potential of using epigenetic modifications as diagnostic biomarkers and therapeutic targets for more personalized and targeted glaucoma treatment.
Collapse
Affiliation(s)
- Emanuele Tonti
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Roberto Dell’Omo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
3
|
Kulesh B, Bozadjian R, Parisi RJ, Leong SA, Kautzman AG, Reese BE, Keeley PW. Quantitative trait loci on chromosomes 9 and 19 modulate AII amacrine cell number in the mouse retina. Front Neurosci 2023; 17:1078168. [PMID: 36816119 PMCID: PMC9932814 DOI: 10.3389/fnins.2023.1078168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Sequence variants modulating gene function or expression affect various heritable traits, including the number of neurons within a population. The present study employed a forward-genetic approach to identify candidate causal genes and their sequence variants controlling the number of one type of retinal neuron, the AII amacrine cell. Data from twenty-six recombinant inbred (RI) strains of mice derived from the parental C57BL/6J (B6/J) and A/J laboratory strains were used to identify genomic loci regulating cell number. Large variation in cell number is present across the RI strains, from a low of ∼57,000 cells to a high of ∼87,000 cells. Quantitative trait locus (QTL) analysis revealed three prospective controlling genomic loci, on Chromosomes (Chrs) 9, 11, and 19, each contributing additive effects that together approach the range of variation observed. Composite interval mapping validated two of these loci, and chromosome substitution strains, in which the A/J genome for Chr 9 or 19 was introgressed on a B6/J genetic background, showed increased numbers of AII amacrine cells as predicted by those two QTL effects. Analysis of the respective genomic loci identified candidate controlling genes defined by their retinal expression, their established biological functions, and by the presence of sequence variants expected to modulate gene function or expression. Two candidate genes, Dtx4 on Chr 19, being a regulator of Notch signaling, and Dixdc1 on Chr 9, a modulator of the WNT-β-catenin signaling pathway, were explored in further detail. Postnatal overexpression of Dtx4 was found to reduce the frequency of amacrine cells, while Dixdc1 knockout retinas contained an excess of AII amacrine cells. Sequence variants in each gene were identified, being the likely sources of variation in gene expression, ultimately contributing to the final number of AII amacrine cells.
Collapse
Affiliation(s)
- Bridget Kulesh
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel Bozadjian
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ryan J. Parisi
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephanie A. Leong
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Amanda G. Kautzman
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Benjamin E. Reese
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick W. Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
4
|
Keeley PW, Patel PS, Ryu MS, Reese BE. Neurog2 regulates Isl1 to modulate horizontal cell number. Development 2023; 150:dev201315. [PMID: 36537573 PMCID: PMC10108602 DOI: 10.1242/dev.201315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
The population sizes of different retinal cell types vary between different strains of mice, and that variation can be mapped to genomic loci in order to identify its polygenic origin. In some cases, controlling genes act independently, whereas in other instances, they exhibit epistasis. Here, we identify an epistatic interaction revealed through the mapping of quantitative trait loci from a panel of recombinant inbred strains of mice. The population of retinal horizontal cells exhibits a twofold variation in number, mapping to quantitative trait loci on chromosomes 3 and 13, where these loci are shown to interact epistatically. We identify a prospective genetic interaction underlying this, mediated by the bHLH transcription factor Neurog2, at the chromosome 3 locus, functioning to repress the LIM homeodomain transcription factor Isl1, at the chromosome 13 locus. Using single and double conditional knockout mice, we confirm the countervailing actions of each gene, and validate in vitro a crucial role for two single nucleotide polymorphisms in the 5'UTR of Isl1, one of which yields a novel E-box, mediating the repressive action of Neurog2.
Collapse
Affiliation(s)
- Patrick W. Keeley
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Pooja S. Patel
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Matthew S. Ryu
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Benjamin E. Reese
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
| |
Collapse
|
5
|
Reh M, Lee M, Zeck G. Expression of Channelrhodopsin‐2 in Rod Bipolar Cells Restores ON and OFF Responses at High Spatial Resolution in Blind Mouse Retina. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miriam Reh
- Neurophysics NMI Natural and Medical Sciences Institute at the University of Tübingen 72770 Reutlingen Germany
- Graduate School of Neural Information Processing/ International Max Planck Research School Tübingen Germany
| | - Meng‐Jung Lee
- Neurophysics NMI Natural and Medical Sciences Institute at the University of Tübingen 72770 Reutlingen Germany
- Graduate School of Neural Information Processing/ International Max Planck Research School Tübingen Germany
| | - Günther Zeck
- Neurophysics NMI Natural and Medical Sciences Institute at the University of Tübingen 72770 Reutlingen Germany
- Institute of Biomedical Electronics TU Wien 1040 Vienna Austria
| |
Collapse
|
6
|
Geisert EE, Williams RW. Using BXD mouse strains in vision research: A systems genetics approach. Mol Vis 2020; 26:173-187. [PMID: 32180682 PMCID: PMC7058434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
We illustrate the growing power of the BXD family of mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice) and companion bioinformatic tools to study complex genome-phenome relations related to glaucoma. Over the past 16 years, our group has integrated powerful murine resources and web-accessible tools to identify networks modulating visual system traits-from photoreceptors to the visual cortex. Recent studies focused on retinal ganglion cells and glaucoma risk factors, including intraocular pressure (IOP), central corneal thickness (CCT), and susceptibility of cellular stress. The BXD family was exploited to define key gene variants and then establish linkage to glaucoma in human cohorts. The power of this experimental approach to precision medicine is highlighted by recent studies that defined cadherin 11 (Cdh11) and a calcium channel (Cacna2d1) as genes modulating IOP, Pou6f2 as a genetic link between CCT and retinal ganglion cell (RGC) death, and Aldh7a1 as a gene that modulates the susceptibility of RGCs to death after elevated IOP. The role of three of these gene variants in glaucoma is discussed, along with the pathways activated in the disease process.
Collapse
Affiliation(s)
- Eldon E. Geisert
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE Atlanta GA, 30322
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 71 S Manassas St, Memphis TN 38163
| |
Collapse
|
7
|
Martynova E, Zhao Y, Xie Q, Zheng D, Cvekl A. Transcriptomic analysis and novel insights into lens fibre cell differentiation regulated by Gata3. Open Biol 2019; 9:190220. [PMID: 31847788 PMCID: PMC6936257 DOI: 10.1098/rsob.190220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gata3 is a DNA-binding transcription factor involved in cellular differentiation in a variety of tissues including inner ear, hair follicle, kidney, mammary gland and T-cells. In a previous study in 2009, Maeda et al. (Dev. Dyn.238, 2280–2291; doi:10.1002/dvdy.22035) found that Gata3 mutants could be rescued from midgestational lethality by the expression of a Gata3 transgene in sympathoadrenal neuroendocrine cells. The rescued embryos clearly showed multiple defects in lens fibre cell differentiation. To determine whether these defects were truly due to the loss of Gata3 expression in the lens, we generated a lens-specific Gata3 loss-of-function model. Analogous to the previous findings, our Gata3 null embryos showed abnormal regulation of cell cycle exit during lens fibre cell differentiation, marked by reduction in the expression of the cyclin-dependent kinase inhibitors Cdkn1b/p27 and Cdkn1c/p57, and the retention of nuclei accompanied by downregulation of Dnase IIβ. Comparisons of transcriptomes between control and mutated lenses by RNA-Seq revealed dysregulation of lens-specific crystallin genes and intermediate filament protein Bfsp2. Both Cdkn1b/p27 and Cdkn1c/p57 loci are occupied in vivo by Gata3, as well as Prox1 and c-Jun, in lens chromatin. Collectively, our studies suggest that Gata3 regulates lens differentiation through the direct regulation of the Cdkn1b/p27and Cdkn1c/p57 expression, and the direct/or indirect transcriptional control of Bfsp2 and Dnase IIβ.
Collapse
Affiliation(s)
- Elena Martynova
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yilin Zhao
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qing Xie
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Kautzman AG, Keeley PW, Ackley CR, Leong S, Whitney IE, Reese BE. Xkr8 Modulates Bipolar Cell Number in the Mouse Retina. Front Neurosci 2018; 12:876. [PMID: 30559640 PMCID: PMC6286994 DOI: 10.3389/fnins.2018.00876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022] Open
Abstract
The present study interrogated a quantitative trait locus (QTL) on Chr 4 associated with the population sizes of two types of bipolar cell in the mouse retina. This locus was identified by quantifying the number of rod bipolar cells and Type 2 cone bipolar cells across a panel of recombinant inbred (RI) strains of mice derived from two inbred laboratory strains, C57BL/6J (B6/J) and A/J, and mapping a proportion of that variation in cell number, for each cell type, to this shared locus. There, we identified the candidate gene X Kell blood group precursor related family member 8 homolog (Xkr8). While Xkr8 has no documented role in the retina, we localize robust expression in the mature retina via in situ hybridization, confirm its developmental presence via immunolabeling, and show that it is differentially regulated during the postnatal period between the B6/J and A/J strains using qPCR. Microarray analysis, derived from whole eye mRNA from the entire RI strain set, demonstrates significant negative correlation of Xkr8 expression with the number of each of these two types of bipolar cells, and the variation in Xkr8 expression across the strains maps a cis-eQTL, implicating a regulatory variant discriminating the parental genomes. Xkr8 plasmid electroporation during development yielded a reduction in the number of bipolar cells in the retina, while sequence analysis of Xkr8 in the two parental strain genomes identified a structural variant in the 3′ UTR that may disrupt mRNA stability, and two SNPs in the promoter that create transcription factor binding sites. We propose that Xkr8, via its participation in mediating cell death, plays a role in the specification of bipolar cell number in the retina.
Collapse
Affiliation(s)
- Amanda G Kautzman
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Cellular, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Caroline R Ackley
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Cellular, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephanie Leong
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Cellular, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Irene E Whitney
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Cellular, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|