1
|
Parsaei M, Barahman G, Roumiani PH, Ranjbar E, Ansari S, Najafi A, Karimi H, Aarabi MH, Moghaddam HS. White matter correlates of cognition: A diffusion magnetic resonance imaging study. Behav Brain Res 2025; 476:115222. [PMID: 39216828 DOI: 10.1016/j.bbr.2024.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Our comprehension of the interplay of cognition and the brain remains constrained. While functional imaging studies have identified cognitive brain regions, structural correlates of cognitive functions remain underexplored. Advanced methods like Diffusion Magnetic Resonance Imaging (DMRI) facilitate the exploration of brain connectivity and White Matter (WM) tract microstructure. Therefore, we conducted connectometry method on DMRI data, to reveal WM tracts associated with cognition. METHODS 125 healthy participants from the National Institute of Mental Health Intramural Healthy Volunteer Dataset were recruited. Multiple regression analyses were conducted between DMRI-derived Quantitative Anisotropy (QA) values within WM tracts and scores of participants in Flanker Inhibitory Control and Attention Test (attention), Dimensional Change Card Sort (executive function), Picture Sequence Memory Test (episodic memory), and List Sorting Working Memory Test (working memory) tasks from National Institute of Health toolbox. The significance level was set at False Discovery Rate (FDR)<0.05. RESULTS We identified significant positive correlations between the QA of WM tracts within the left cerebellum and bilateral fornix with attention, executive functioning, and episodic memory (FDR=0.018, 0.0002, and 0.0002, respectively), and a negative correlation between QA of WM tracts within bilateral cerebellum with attention (FDR=0.028). Working memory demonstrated positive correlations with QA of left inferior longitudinal and left inferior fronto-occipital fasciculi (FDR=0.0009), while it showed a negative correlation with QA of right cerebellar tracts (FDR=0.0005). CONCLUSION Our results underscore the intricate link between cognitive performance and WM integrity in frontal, temporal, and cerebellar regions, offering insights into early detection and targeted interventions for cognitive disorders.
Collapse
Affiliation(s)
- Mohammadamin Parsaei
- Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gelayol Barahman
- School of Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | - Ehsan Ranjbar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ansari
- Psychosomatic Medicine Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Najafi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mallahzadeh A, Shafie M, Tahvilian M, Sadeghi M, Moslemian G, Barzin P, Bemanalizadeh M, Mayeli M, Aarabi MH. White matter tracts alterations underpinning reward and conflict processing. J Affect Disord 2023; 331:251-258. [PMID: 36958490 DOI: 10.1016/j.jad.2023.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Reinforcement sensitivity theory (RST) is proposed as a neurobiological system that eventually led to emotion and motivation-based constructs of personality. Traditionally segmented into the behavioral activation system (BAS) and the behavioral inhibition system (BIS), RST is commonly used to describe personality and behavior. Although there have been studies linking gray matter alterations with BIS/BAS subscales, the role of white matter (WM) alterations is yet controversial. We aimed to investigate the specific WM tracts associated with BIS/BAS scores. METHODS 220 healthy participants (mean age = 39.14 ± 20.23, 80 (35.7 %) females) were evaluated using the BIS/BAS questionnaire from the LEMON database. Diffusion MRI connectometry (DMRI) was used to investigate the WM correlates of BIS/BAS subscales in each gender group. Multiple regression models with the covariates of age, handedness, and education were fitted to address the correlation of local connectomes with BIS/BAS components. RESULTS DMRI connectometry revealed that the quantitative anisotropy (QA) value of the splenium of the corpus callosum, right cerebellum, middle cerebellar peduncle, and superior cerebellar peduncle, had a significant negative correlation with each BIS/BAS subscale. In contrast, the QA value in the body of the corpus callosum and bilateral cingulum showed a positive correlation with BIS/BAS subscales. CONCLUSION The connectivity of WM in certain tracts may contribute to behavioral activation and inhibition. This finding expands the findings on the neural networks associated with risk-taking and reward-seeking behaviors.
Collapse
Affiliation(s)
- Arashk Mallahzadeh
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahan Shafie
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Tahvilian
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadeghi
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Golsa Moslemian
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Barzin
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bemanalizadeh
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Mayeli
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Imam Khomeini Hospital Complex, Tehran, Iran.
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Sinaeifar Z, Mayeli M, Shafie M, Pooyan A, Cattarinussi G, Aarabi MH, Sambataro F. Trait anger representation in microstructural white matter tracts: A diffusion MRI study. J Affect Disord 2023; 322:249-257. [PMID: 36368424 DOI: 10.1016/j.jad.2022.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Understanding the microstructure of the brain that underlies emotions is of pivotal importance for psychology and psychiatry. Herein, we investigated white matter (WM) tracts associated with anger using the diffusion magnetic resonance imaging (DMRI) connectometry approach while exploring potential sex differences. METHODS 225 healthy participants from the LEMON database were evaluated using the State-Trait Anger Expression Inventory (STAXI). WM images were prepared and analyzed with DMRI. Multiple regression models were fitted to address the correlation of local connectomes with STAXI components with age and handedness as covariates. RESULTS There were no statistically significant differences in state anger and trait anger between males and females (p = 0.55 and 0.30, respectively). DMRI connectometry revealed that quantitative anisotropy (QA) values in the bilateral corticospinal tract (CST), splenium of corpus callosum (SCC), middle cerebellar peduncle, left inferior cerebellar peduncle, left cingulum, and left fornix were negatively correlated with trait anger and trait anger temperament (TAT) in males. In contrast, the QA values in the bilateral CST and SCC showed a positive correlation with trait anger and TAT in females, which, however, did not reach statistical significance. LIMITATIONS The cross-sectional design and self-reported measures of anger limit the generalizability of our results. CONCLUSIONS This is the first DMRI connectometry study to investigate WM circuits involved in anger. We found that the pathways associated with the limbic system and movement-related regions were involved in trait anger and anger expression in men, while no brain pathways showed a significant relationship with anger in women.
Collapse
Affiliation(s)
- Zeinab Sinaeifar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mayeli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Shafie
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Pooyan
- Department of Radiology, University of Washington, Seattle, USA
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
4
|
Surface-Based Cortical Measures in Multimodal Association Brain Regions Predict Chess Expertise. Brain Sci 2022; 12:brainsci12111592. [PMID: 36421916 PMCID: PMC9688322 DOI: 10.3390/brainsci12111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The complex structure of the brain supports high-order cognition, which is crucial for mastering chess. Surface-based measures, including the fractional dimension (FD) and gyrification index (GI), may be more sensitive in detecting cortical changes relative to volumetric indexes. For this reason, structural magnetic resonance imaging data from 29 chess experts and 29 novice participants were analyzed using the CAT12 toolbox. FD and GI for each brain region were compared between the groups. A multivariate model was used to identify surface-based brain measures that can predict chess expertise. In chess experts, FD is increased in the left frontal operculum (p < 0.01), and this change correlates with the starting age of chess practice (ρ = −0.54, p < 0.01). FD is decreased in the right superior parietal lobule (p < 0.01). Chess expertise is predicted by the FD in a network of fronto-parieto-temporal regions and is associated with GI changes in the middle cingulate gyrus (p < 0.01) and the superior temporal sulcus (p < 0.01). Our findings add to the evidence that chess expertise is based on the complex properties of the brain surface of a network of transmodal association areas important for flexible high-level cognitive functions. Interestingly, these changes are associated with long-lasting practice, suggesting that neuroplastic effects develop over time.
Collapse
|
5
|
Qiu C, Zhao C, Hu G, Zhang Y, Zhu Y, Wu X, Wang L. Brain structural plasticity in visual and sensorimotor areas of airline pilots: A voxel-based morphometric study. Behav Brain Res 2021; 411:113377. [PMID: 34023308 DOI: 10.1016/j.bbr.2021.113377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Airline pilot is a highly specialized profession that requires to response quickly and accurately in the presence of a wide variety of visual information. Although functional imaging studies have employed virtual simulation to identify brain areas that underlie various flying-related tasks, little is known about the specific patterns of structural plasticity in the airline pilot's brain. MATERIALS AND METHODS In this study, we examined differences of gray matter and white matter volumes between 42 airline pilots and 39 non-pilots by using voxel-based morphometry, and further assessed the association between magnitude of structural alterations and flight time in the pilots. RESULTS We found significantly increased white matter volume in the cuneus area in the pilot group compared to the non-pilot group (p < 0.05, FWE corrected). Using a relaxed threshold, it was also observed that the pilots had increased gray matter volume in the lingual gyrus, inferior frontal gyrus, supramarginal gyrus, cuneus, and postcentral gyrus, and increased white matter volume in the postcentral area (p < 0.001, uncorrected). Moreover, the pilots' flight time was positively correlated with gray matter volume in the postcentral gyrus and white matter volume in the cuneus area (p < 0.001, uncorrected). CONCLUSIONS The morphological changes in specific visual and sensorimotor areas may provide airline pilots with neural efficiency in the visuo-motor processing related to flight.
Collapse
Affiliation(s)
- Chuanya Qiu
- Department of Radiology, Beijing Chaoyang Hospital of the Capital Medical University, Beijing, 100020, China; Department of Radiology, Civil Aviation General Hospital, Beijing, 100123, China
| | - Chunyu Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Gang Hu
- Department of Radiology, Seventh Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Yong Zhang
- Department of Radiology, Civil Aviation General Hospital, Beijing, 100123, China
| | - Yuyang Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xinhuai Wu
- Department of Radiology, Seventh Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China.
| | - Lubin Wang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
6
|
D'Souza S, Hirt L, Ormond DR, Thompson JA. Retrospective analysis of hemispheric structural network change as a function of location and size of glioma. Brain Commun 2021; 3:fcaa216. [PMID: 33501423 PMCID: PMC7811759 DOI: 10.1093/braincomms/fcaa216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
Gliomas are neoplasms that arise from glial cell origin and represent the largest fraction of primary malignant brain tumours (77%). These highly infiltrative malignant cell clusters modify brain structure and function through expansion, invasion and intratumoral modification. Depending on the growth rate of the tumour, location and degree of expansion, functional reorganization may not lead to overt changes in behaviour despite significant cerebral adaptation. Studies in simulated lesion models and in patients with stroke reveal both local and distal functional disturbances, using measures of anatomical brain networks. Investigations over the last two decades have sought to use diffusion tensor imaging tractography data in the context of intracranial tumours to improve surgical planning, intraoperative functional localization, and post-operative interpretation of functional change. In this study, we used diffusion tensor imaging tractography to assess the impact of tumour location on the white matter structural network. To better understand how various lobe localized gliomas impact the topology underlying efficiency of information transfer between brain regions, we identified the major alterations in brain network connectivity patterns between the ipsilesional versus contralesional hemispheres in patients with gliomas localized to the frontal, parietal or temporal lobe. Results were indicative of altered network efficiency and the role of specific brain regions unique to different lobe localized gliomas. This work draws attention to connections and brain regions which have shared structural susceptibility in frontal, parietal and temporal lobe glioma cases. This study also provides a preliminary anatomical basis for understanding which affected white matter pathways may contribute to preoperative patient symptomology.
Collapse
Affiliation(s)
- Shawn D'Souza
- MD Program, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lisa Hirt
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Masters of Science in Modern Human Anatomy Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - David R Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Masters of Science in Modern Human Anatomy Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Rahmani F, Sanjari Moghaddam H, Aarabi MH. Intact microstructure of the right corticostriatal pathway predicts creative ability in healthy adults. Brain Behav 2020; 10:e01895. [PMID: 33063472 PMCID: PMC7749564 DOI: 10.1002/brb3.1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Creativity is one of the most complex functions of the human brain. The corticostriatal pathways have been implicated in creative thinking, yet few studies have addressed the microstructural underpinnings of creative ability, especially those related to the corticostriatal dopaminergic circuitry. We hypothesized that performance in creativity tests can be predicted based on diffusion metrics of the corticostriatal pathways and basal ganglia. METHODS A total of 37 healthy adults were included. Neuropsychological tests of creativity, including the alternative uses task (AUT), test of creative imagery abilities (TCIA), remote associates test (RAT), and creative achievement questionnaire (CAQ), as well as diffusion MRI data were acquired for each participant. RESULTS We demonstrated an independent effect of TCIA originality and TCIA transformativeness subscores, and RAT score in predicting the mean diffusivity (MD), mean axial diffusivity (AD), mean fractional anisotropy (FA), and mean generalized FA of the right corticostriatal pathway. We also observed independent effects of AUT elaboration subscore in predicting the AD of the right substantia nigra, and radial diffusivity (RD) of the right globus pallidus. CONCLUSION Our results put a further spin on the "creative right brain" notion and question the presence of high-creative and low-creative networks in the brain.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | | |
Collapse
|
8
|
Wu H, Yan H, Yang Y, Xu M, Shi Y, Zeng W, Li J, Zhang J, Chang C, Wang N. Occupational Neuroplasticity in the Human Brain: A Critical Review and Meta-Analysis of Neuroimaging Studies. Front Hum Neurosci 2020; 14:215. [PMID: 32760257 PMCID: PMC7373999 DOI: 10.3389/fnhum.2020.00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Many studies have revealed the structural or functional brain changes induced by occupational factors. However, it remains largely unknown how occupation-related connectivity shapes the brain. In this paper, we denote occupational neuroplasticity as the neuroplasticity that takes place to satisfy the occupational requirements by extensively professional training and to accommodate the long-term, professional work of daily life, and a critical review of occupational neuroplasticity related to the changes in brain structure and functional networks has been primarily presented. Furthermore, meta-analysis revealed a neurophysiological mechanism of occupational neuroplasticity caused by professional experience. This meta-analysis of functional neuroimaging studies showed that experts displayed stronger activation in the left precentral gyrus [Brodmann area (BA)6], left middle frontal gyrus (BA6), and right inferior frontal gyrus (BA9) than novices, while meta-analysis of structural studies suggested that experts had a greater gray matter volume in the bilateral superior temporal gyrus (BA22) and right putamen than novices. Together, these findings not only expand the current understanding of the common neurophysiological basis of occupational neuroplasticity across different occupations and highlight some possible targets for neural modulation of occupational neuroplasticity but also provide a new perspective for occupational science research.
Collapse
Affiliation(s)
- Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Yang Yang
- Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China
| | - Yuhu Shi
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Jiewei Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian Zhang
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Pengcheng Laboratory, Shenzhen, China
| | - Nizhuan Wang
- Artificial Intelligence & Neuro-Informatics Engineering (ARINE) Laboratory, School of Computer Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
9
|
Wang Y, Zuo C, Wang D, Tao S, Hao L. Reduced Thalamus Volume and Enhanced Thalamus and Fronto-Parietal Network Integration in the Chess Experts. Cereb Cortex 2020; 30:5560-5569. [PMID: 32488242 DOI: 10.1093/cercor/bhaa140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023] Open
Abstract
The ability of chess experts depends to a large extent on spatial visual processing, attention, and working memory, all of which are thought to be mediated by the thalamus. This study explored whether continued practice and rehearsal over a long period of time results in structural changes in the thalamic region. We found smaller gray matter volume regions in the thalami of expert Chinese chess players in comparison with novice players. We then used these regions as seeds for resting-state functional connectivity analysis and observed significantly strengthened integration between the thalamus and fronto-parietal network in expert Chinese chess players. This strengthened integration that includes a group of brain regions showing an increase in activation to external stimulation, particularly during tasks relying on working memory and attention. Our findings demonstrate structural changes in the thalamus caused by a wide range of engagement in chess problem solving, and that this strengthened functional integration with widely distributed circuitry better supports high-level cognitive control of behavior.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chenyi Zuo
- College of Educational Science, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Daoyang Wang
- College of Educational Science, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Lei Hao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|