1
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Tang G, Zhou H, Zeng C, Jiang Y, Li Y, Hou L, Liao K, Tan Z, Wu H, Tang Y, Cheng Y, Ling X, Guo Q, Xu H. Alterations of apparent diffusion coefficient from ultra high b-values in the bilateral thalamus and striatum in MRI-negative drug-resistant epilepsy. Epilepsia Open 2024; 9:1515-1525. [PMID: 38943548 PMCID: PMC11296122 DOI: 10.1002/epi4.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/01/2024] [Accepted: 05/26/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVE Subcortical nuclei such as the thalamus and striatum have been shown to be related to seizure modulation and termination, especially in drug-resistant epilepsy. Enhance diffusion-weighted imaging (eDWI) technique and tri-component model have been used in previous studies to calculate apparent diffusion coefficient from ultra high b-values (ADCuh). This study aimed to explore the alterations of ADCuh in the bilateral thalamus and striatum in MRI-negative drug-resistant epilepsy. METHODS Twenty-nine patients with MRI-negative drug-resistant epilepsy and 18 healthy controls underwent eDWI scan with 15 b-values (0-5000 s/mm2). The eDWI parameters including standard ADC (ADCst), pure water diffusion (D), and ADCuh were calculated from the 15 b-values. Regions-of-interest (ROIs) analyses were conducted in the bilateral thalamus, caudate nucleus, putamen, and globus pallidus. ADCst, D, and ADCuh values were compared between the MRI-negative drug-resistant epilepsy patients and controls using multivariate generalized linear models. Inter-rater reliability was assessed using the intra-class correlation coefficient (ICC) and Bland-Altman (BA) analysis. False discovery rate (FDR) method was applied for multiple comparisons correction. RESULTS ADCuh values in the bilateral thalamus, caudate nucleus, putamen, and globus pallidus in MRI-negative drug-resistant epilepsy were significantly higher than those in the healthy control subjects (all p < 0.05, FDR corrected). SIGNIFICANCE The alterations of the ADCuh values in the bilateral thalamus and striatum in MRI-negative drug-resistant epilepsy might reflect abnormal membrane water permeability in MRI-negative drug-resistant epilepsy. ADCuh might be a sensitive measurement for evaluating subcortical nuclei-related brain damage in epilepsy patients. PLAIN LANGUAGE SUMMARY This study aimed to explore the alterations of apparent diffusion coefficient calculated from ultra high b-values (ADCuh) in the subcortical nuclei such as the bilateral thalamus and striatum in MRI-negative drug-resistant epilepsy. The bilateral thalamus and striatum showed higher ADCuh in epilepsy patients than healthy controls. These findings may add new evidences of subcortical nuclei abnormalities related to water and ion hemostasis in epilepsy patients, which might help to elucidate the underlying epileptic neuropathophysiological mechanisms and facilitate the exploration of therapeutic targets.
Collapse
Affiliation(s)
- Guixian Tang
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Hailing Zhou
- Department of RadiologyCentral People's Hospital of ZhanjiangZhanjiangChina
| | - Chunyuan Zeng
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yuanfang Jiang
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Ying Li
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Lu Hou
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Kai Liao
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zhiqiang Tan
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Huanhua Wu
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yongjin Tang
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yong Cheng
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Xueying Ling
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Qiang Guo
- Epilepsy Center, Guangdong 999 Brain HospitalAffiliated Brain Hospital of Jinan UniversityGuangzhouChina
| | - Hao Xu
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
3
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
4
|
Arredondo K, Ostendorf AP, Ahrens S, Beatty CW, Pindrik J, Shaikhouni A. Post-ictal Rhythmic Thalamic Activity of the Centromedian Nucleus. J Clin Neurophysiol 2024; 41:326-333. [PMID: 36893381 DOI: 10.1097/wnp.0000000000000991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION Deep brain stimulation of the centromedian nucleus of the thalamus (CMN) to treat drug-resistant epilepsy has been of interest for decades. However, little is known about the electrophysiological activity of the CMN during seizures. We describe a novel CMN EEG finding associated with seizure: post-ictal rhythmic thalamic activity. METHODS Five patients with drug-resistant epilepsy of unknown etiology with focal onset seizures underwent stereoelectroencephalography monitoring as part of evaluation for potential resective surgery or neuromodulation. Two patients had previously undergone complete corpus callosotomy and vagus nerve stimulation. A standardized plan for implantation included targets in the bilateral CMN. RESULTS Each patient had frontal onset seizures, and two patients had additional insular, parietal, or mesial temporal onset seizures. Contacts of CMN were involved synchronously or rapidly after onset in most recorded seizures, particularly those with frontal onset. Focal onset hemiclonic and bilateral tonic-clonic seizures spread to involve cortical contacts with high-amplitude rhythmic spiking followed by abrupt offset with diffuse voltage attenuation. A post-ictal rhythmic 1.5 to 2.5 Hz delta frequency pattern, post-ictal rhythmic thalamic activity, emerged in CMN contacts amid the suppression of background activity in cortical contacts. In the two patients with corpus callosotomy, unilateral seizure spread and ipsilateral post-ictal rhythmic thalamic activity were observed. CONCLUSIONS We observed post-ictal rhythmic thalamic activity in five patients with stereoelectroencephalography monitoring of the CMN with convulsive seizures. This rhythm appears late in ictal evolution and may signal an important role of the CMN in seizure termination. Furthermore, this rhythm may help identify CMN involvement in the epileptic network.
Collapse
Affiliation(s)
- Kristen Arredondo
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX, U.S.A
| | - Adam P Ostendorf
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, U.S.A; and
| | - Stephanie Ahrens
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, U.S.A; and
| | - Christopher W Beatty
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, U.S.A; and
| | - Jonathan Pindrik
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, U.S.A
| | - Ammar Shaikhouni
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, U.S.A
| |
Collapse
|
5
|
Ayyoubi AH, Fazli Besheli B, Quach MM, Gavvala JR, Goldman AM, Swamy CP, Bartoli E, Curry DJ, Sheth SA, Francis DJ, Ince NF. Benchmarking signal quality and spatiotemporal distribution of interictal spikes in prolonged human iEEG recordings using CorTec wireless brain interchange. Sci Rep 2024; 14:2652. [PMID: 38332136 PMCID: PMC10853182 DOI: 10.1038/s41598-024-52487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Neuromodulation through implantable pulse generators (IPGs) represents an important treatment approach for neurological disorders. While the field has observed the success of state-of-the-art interventions, such as deep brain stimulation (DBS) or responsive neurostimulation (RNS), implantable systems face various technical challenges, including the restriction of recording from a limited number of brain sites, power management, and limited external access to the assessed neural data in a continuous fashion. To the best of our knowledge, for the first time in this study, we investigated the feasibility of recording human intracranial EEG (iEEG) using a benchtop version of the Brain Interchange (BIC) unit of CorTec, which is a portable, wireless, and externally powered implant with sensing and stimulation capabilities. We developed a MATLAB/SIMULINK-based rapid prototyping environment and a graphical user interface (GUI) to acquire and visualize the iEEG captured from all 32 channels of the BIC unit. We recorded prolonged iEEG (~ 24 h) from three human subjects with externalized depth leads using the BIC and commercially available clinical amplifiers simultaneously in the epilepsy monitoring unit (EMU). The iEEG signal quality of both streams was compared, and the results demonstrated a comparable power spectral density (PSD) in all the systems in the low-frequency band (< 80 Hz). However, notable differences were primarily observed above 100 Hz, where the clinical amplifiers were associated with lower noise floor (BIC-17 dB vs. clinical amplifiers < - 25 dB). We employed an established spike detector to assess and compare the spike rates in each iEEG stream. We observed over 90% conformity between the spikes rates and their spatial distribution captured with BIC and clinical systems. Additionally, we quantified the packet loss characteristic in the iEEG signal during the wireless data transfer and conducted a series of simulations to compare the performance of different interpolation methods for recovering the missing packets in signals at different frequency bands. We noted that simple linear interpolation has the potential to recover the signal and reduce the noise floor with modest packet loss levels reaching up to 10%. Overall, our results indicate that while tethered clinical amplifiers exhibited noticeably better noise floor above 80 Hz, epileptic spikes can still be detected successfully in the iEEG recorded with the externally powered wireless BIC unit opening the road for future closed-loop neuromodulation applications with continuous access to brain activity.
Collapse
Affiliation(s)
- Amir Hossein Ayyoubi
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Behrang Fazli Besheli
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael M Quach
- Department of Neurology, Texas Children's Hospital, Houston, TX, USA
| | | | - Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | | | - Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Daniel J Curry
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - David J Francis
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Nuri F Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Rosenfeld JV. Neurosurgery and the Brain-Computer Interface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:513-527. [PMID: 39523287 DOI: 10.1007/978-3-031-64892-2_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Brain-computer interfaces (BCIs) are devices that connect the human brain to an effector via a computer and electrode interface. BCIs may also transmit sensory data to the brain. We describe progress with the many types of surgically implanted BCIs, in which electrodes contact or penetrate the cerebral cortex. BCIs developed for restoration of movement in paralyzed limbs or control a robotic arm; restoration of somatic sensation, speech, vision, memory, hearing, and olfaction are also presented. Most devices remain experimental. Commercialization is costly, incurs financial risk, and is time consuming. There are many ethical principles that should be considered by neurosurgeons and by all those responsible for the care of people with serious neurological disability. These considerations are also paramount when the technology is used in for the purpose of enhancement of normal function and where commercial gain is a factor. A new regulatory and legislative framework is urgently required. The evolution of BCIs is occurring rapidly with advances in computer science, artificial intelligence, electronic engineering including wireless transmission, and materials science. The era of the brain-"cloud" interface is approaching.
Collapse
Affiliation(s)
- Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia.
- Department of Surgery, Monash University, Clayton, VIC, Australia.
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of The Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
7
|
Fields MC, Eka O, Schreckinger C, Dugan P, Asaad WF, Blum AS, Bullinger K, Willie JT, Burdette DE, Anderson C, Quraishi IH, Gerrard J, Singh A, Lee K, Yoo JY, Ghatan S, Panov F, Marcuse LV. A multicenter retrospective study of patients treated in the thalamus with responsive neurostimulation. Front Neurol 2023; 14:1202631. [PMID: 37745648 PMCID: PMC10516547 DOI: 10.3389/fneur.2023.1202631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction For drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures. This paper explores the use of RNS in the centromedian nucleus of the thalamus (CMN) and in the anterior thalamic nucleus (ANT) of patients with drug resistant epilepsy. Methods This is a retrospective multicenter study from seven different epilepsy centers in the United States. Patients that had unilateral or bilateral thalamic RNS leads implanted in the CMN or ANT for at least 6 months were included. Primary objectives were to describe the implant location and determine changes in the frequency of disabling seizures at 6 months, 1 year, 2 years, and > 2 years. Secondary objectives included documenting seizure free periods, anti-seizure medication regimen changes, stimulation side effects, and serious adverse events. In addition, the global clinical impression scale was completed. Results Twelve patients had at least one lead placed in the CMN, and 13 had at least one lead placed in the ANT. The median baseline seizure frequency was 15 per month. Overall, the median seizure reduction was 33% at 6 months, 55% at 1 year, 65% at 2 years, and 74% at >2 years. Seizure free intervals of at least 3 months occurred in nine patients. Most patients (60%, 15/25) did not have a change in anti-seizure medications post RNS placement. Two serious adverse events were recorded, one related to RNS implantation. Lastly, overall functioning seemed to improve with 88% showing improvement on the global clinical impression scale. Discussion Meaningful seizure reduction was observed in patients who suffer from drug resistant epilepsy with unilateral or bilateral RNS in either the ANT or CMN of the thalamus. Most patients remained on their pre-operative anti-seizure medication regimen. The device was well tolerated with few side effects. There were rare serious adverse events. Most patients showed an improvement in global clinical impression scores.
Collapse
Affiliation(s)
- Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Onome Eka
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Patricia Dugan
- Department of Neurology, Langone Medical Center, New York University, New York, NY, United States
| | - Wael F Asaad
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Andrew S Blum
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Katie Bullinger
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Jon T Willie
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, United States
| | - David E Burdette
- Department of Neurosciences, Corewell Health, Grand Rapids, MI, United States
| | - Christopher Anderson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Imran H Quraishi
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Jason Gerrard
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Anuradha Singh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kyusang Lee
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Yeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lara V Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
9
|
Mohanty D, Quach M. The Noninvasive Evaluation for Minimally Invasive Pediatric Epilepsy Surgery (MIPES): A Multimodal Exploration of the Localization-Based Hypothesis. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractMinimally invasive pediatric epilepsy surgery (MIPES) is a rising technique in the management of focal-onset drug-refractory epilepsy. Minimally invasive surgical techniques are based on small, focal interventions (such as parenchymal ablation or localized neuromodulation) leading to elimination of the seizure onset zone or interruption of the larger epileptic network. Precise localization of the seizure onset zone, demarcation of eloquent cortex, and mapping of the network leading to seizure propagation are required to achieve optimal outcomes. The toolbox for presurgical, noninvasive evaluation of focal epilepsy continues to expand rapidly, with a variety of options based on advanced imaging and electrophysiology. In this article, we will examine several of these diagnostic modalities from the standpoint of MIPES and discuss how each can contribute to the development of a localization-based hypothesis for potential surgical targets.
Collapse
Affiliation(s)
- Deepankar Mohanty
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Michael Quach
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
10
|
Beaudreault CP, Muh CR, Naftchi A, Spirollari E, Das A, Vazquez S, Sukul VV, Overby PJ, Tobias ME, McGoldrick PE, Wolf SM. Responsive Neurostimulation Targeting the Anterior, Centromedian and Pulvinar Thalamic Nuclei and the Detection of Electrographic Seizures in Pediatric and Young Adult Patients. Front Hum Neurosci 2022; 16:876204. [PMID: 35496067 PMCID: PMC9039390 DOI: 10.3389/fnhum.2022.876204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
BackgroundResponsive neurostimulation (RNS System) has been utilized as a treatment for intractable epilepsy. The RNS System delivers stimulation in response to detected abnormal activity, via leads covering the seizure foci, in response to detections of predefined epileptiform activity with the goal of decreasing seizure frequency and severity. While thalamic leads are often implanted in combination with cortical strip leads, implantation and stimulation with bilateral thalamic leads alone is less common, and the ability to detect electrographic seizures using RNS System thalamic leads is uncertain.ObjectiveThe present study retrospectively evaluated fourteen patients with RNS System depth leads implanted in the thalamus, with or without concomitant implantation of cortical strip leads, to determine the ability to detect electrographic seizures in the thalamus. Detailed patient presentations and lead trajectories were reviewed alongside electroencephalographic (ECoG) analyses.ResultsAnterior nucleus thalamic (ANT) leads, whether bilateral or unilateral and combined with a cortical strip lead, successfully detected and terminated epileptiform activity, as demonstrated by Cases 2 and 3. Similarly, bilateral centromedian thalamic (CMT) leads or a combination of one centromedian thalamic alongside a cortical strip lead also demonstrated the ability to detect electrographic seizures as seen in Cases 6 and 9. Bilateral pulvinar leads likewise produced reliable seizure detection in Patient 14. Detections of electrographic seizures in thalamic nuclei did not appear to be affected by whether the patient was pediatric or adult at the time of RNS System implantation. Sole thalamic leads paralleled the combination of thalamic and cortical strip leads in terms of preventing the propagation of electrographic seizures.ConclusionThalamic nuclei present a promising target for detection and stimulation via the RNS System for seizures with multifocal or generalized onsets. These areas provide a modifiable, reversible therapeutic option for patients who are not candidates for surgical resection or ablation.
Collapse
Affiliation(s)
| | - Carrie R. Muh
- New York Medical College, Valhalla, NY, United States
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | | | | | - Ankita Das
- New York Medical College, Valhalla, NY, United States
| | - Sima Vazquez
- New York Medical College, Valhalla, NY, United States
| | - Vishad V. Sukul
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | - Philip J. Overby
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
| | - Michael E. Tobias
- New York Medical College, Valhalla, NY, United States
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | - Patricia E. McGoldrick
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
| | - Steven M. Wolf
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
- *Correspondence: Steven M. Wolf,
| |
Collapse
|
11
|
Sinha N, Joshi RB, Sandhu MRS, Netoff TI, Zaveri HP, Lehnertz K. Perspectives on Understanding Aberrant Brain Networks in Epilepsy. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:868092. [PMID: 36926081 PMCID: PMC10013006 DOI: 10.3389/fnetp.2022.868092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/21/2023]
Abstract
Epilepsy is a neurological disorder affecting approximately 70 million people worldwide. It is characterized by seizures that are complex aberrant dynamical events typically treated with drugs and surgery. Unfortunately, not all patients become seizure-free, and there is an opportunity for novel approaches to treat epilepsy using a network view of the brain. The traditional seizure focus theory presumed that seizures originated within a discrete cortical area with subsequent recruitment of adjacent cortices with seizure progression. However, a more recent view challenges this concept, suggesting that epilepsy is a network disease, and both focal and generalized seizures arise from aberrant activity in a distributed network. Changes in the anatomical configuration or widespread neural activities spanning lobes and hemispheres could make the brain more susceptible to seizures. In this perspective paper, we summarize the current state of knowledge, address several important challenges that could further improve our understanding of the human brain in epilepsy, and invite novel studies addressing these challenges.
Collapse
Affiliation(s)
- Nishant Sinha
- Department of Neurology, Penn Epilepsy Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Rasesh B. Joshi
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Theoden I. Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Hitten P. Zaveri
- Department of Neurology, Yale University, New Haven, CT, United States
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Richardson RM. Closed-Loop Brain Stimulation and Paradigm Shifts in Epilepsy Surgery. Neurol Clin 2022; 40:355-373. [PMID: 35465880 PMCID: PMC9271409 DOI: 10.1016/j.ncl.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Advances in device technology have created greater flexibility in treating seizures as emergent properties of networks that exist on a local to global continuum. All patients with drug-resistant epilepsy are potential surgical candidates, given that intracranial neuromodulation through deep brain stimulation and responsive neurostimulation can reduce seizures and improve quality of life, even in multifocal and generalized epilepsies. To achieve this goal, indications and strategies for diagnostic epilepsy surgery are evolving. This article describes the state-of-the-art in epilepsy surgery and related changes in how we define indications for diagnostic and therapeutic surgical intervention.
Collapse
|
13
|
Gao M, Liu R, Mao J. Noise Robustness Low-Rank Learning Algorithm for Electroencephalogram Signal Classification. Front Neurosci 2021; 15:797378. [PMID: 34899177 PMCID: PMC8652211 DOI: 10.3389/fnins.2021.797378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalogram (EEG) is often used in clinical epilepsy treatment to monitor electrical signal changes in the brain of patients with epilepsy. With the development of signal processing and artificial intelligence technology, artificial intelligence classification method plays an important role in the automatic recognition of epilepsy EEG signals. However, traditional classifiers are easily affected by impurities and noise in epileptic EEG signals. To solve this problem, this paper develops a noise robustness low-rank learning (NRLRL) algorithm for EEG signal classification. NRLRL establishes a low-rank subspace to connect the original data space and label space. Making full use of supervision information, it considers the local information preservation of samples to ensure the low-rank representation of within-class compactness and between-classes dispersion. The asymmetric least squares support vector machine (aLS-SVM) is embedded into the objective function of NRLRL. The aLS-SVM finds the maximum quantile distance between the two classes of samples based on the pinball loss function, which further improves the noise robustness of the model. Several classification experiments with different noise intensity are designed on the Bonn data set, and the experiment results verify the effectiveness of the NRLRL algorithm.
Collapse
Affiliation(s)
- Ming Gao
- College of Sports Science and Technology, Wuhan Sports University, Wuhan, China
| | - Runmin Liu
- College of Sports Engineering and Information Technology, Wuhan Sports University, Wuhan, China
| | - Jie Mao
- College of Sports Engineering and Information Technology, Wuhan Sports University, Wuhan, China
| |
Collapse
|
14
|
Rao VR. Chronic electroencephalography in epilepsy with a responsive neurostimulation device: current status and future prospects. Expert Rev Med Devices 2021; 18:1093-1105. [PMID: 34696676 DOI: 10.1080/17434440.2021.1994388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Implanted neurostimulation devices are gaining traction as therapeutic options for people with certain forms of drug-resistant focal epilepsy. Some of these devices enable chronic electroencephalography (cEEG), which offers views of the dynamics of brain activity in epilepsy over unprecedented time horizons. AREAS COVERED This review focuses on clinical insights and basic neuroscience discoveries enabled by analyses of cEEG from an exemplar device, the NeuroPace RNS® System. Applications of RNS cEEG covered here include counting and lateralizing seizures, quantifying medication response, characterizing spells, forecasting seizures, and exploring mechanisms of cognition. Limitations of the RNS System are discussed in the context of next-generation devices in development. EXPERT OPINION The wide temporal lens of cEEG helps capture the dynamism of epilepsy, revealing phenomena that cannot be appreciated with short duration recordings. The RNS System is a vanguard device whose diagnostic utility rivals its therapeutic benefits, but emerging minimally invasive devices, including those with subscalp recording electrodes, promise to be more applicable within a broad population of people with epilepsy. Epileptology is on the precipice of a paradigm shift in which cEEG is a standard part of diagnostic evaluations and clinical management is predicated on quantitative observations integrated over long timescales.
Collapse
Affiliation(s)
- Vikram R Rao
- Associate Professor of Clinical Neurology, Chief, Epilepsy Division, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Zhang F, Yang Y, Zheng Y, Zhu J, Wang P, Xu K. Combination of Matching Responsive Stimulations of Hippocampus and Subiculum for Effective Seizure Suppression in Temporal Lobe Epilepsy. Front Neurol 2021; 12:638795. [PMID: 34512497 PMCID: PMC8426572 DOI: 10.3389/fneur.2021.638795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Responsive neural stimulation (RNS) is considered a promising neural modulation therapy for refractory epilepsy. Combined stimulation on different targets may hold great promise for improving the efficacy of seizure control since neural activity changed dynamically within associated brain targets in the epileptic network. Three major issues need to be further explored to achieve better efficacy of combined stimulation: (1) which nodes within the epileptogenic network should be chosen as stimulation targets? (2) What stimulus frequency should be delivered to different targets? and (3) Could the efficacy of RNS for seizure control be optimized by combined different stimulation targets together? In our current study, Granger causality (GC) method was applied to analyze epileptogenic networks for finding key targets of RNS. Single target stimulation (100 μA amplitude, 300 μs pulse width, 5s duration, biphasic, charge-balanced) with high frequency (130 Hz, HFS) or low frequency (5 Hz, LFS) was firstly delivered by our lab designed RNS systems to CA3, CA1, subiculum (SUB) of hippocampi, and anterior nucleus of thalamus (ANT). The efficacy of combined stimulation with different groups of frequencies was finally assessed to find out better combined key targets with optimal stimulus frequency. Our results showed that stimulation individually delivered to SUB and CA1 could shorten the average duration of seizures. Different stimulation frequencies impacted the efficacy of seizure control, as HFS delivered to CA1 and LFS delivered to SUB, respectively, were more effective for shortening the average duration of electrographic seizure in Sprague-Dawley rats (n = 3). Moreover, the synchronous stimulation of HFS in CA1 combined with LFS in SUB reduced the duration of discharge significantly in rats (n = 6). The combination of responsive stimulation at different targets may be an inspiration to optimize stimulation therapy for epilepsy.
Collapse
Affiliation(s)
- Fang Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Yufang Yang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Yongte Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Junming Zhu
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ping Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Mandloi S, Matias CM, Chengyuan W, Sharan A. The Impact of Responsive Neurostimulation on the Treatment of Epilepsy. Neurol India 2021; 68:S278-S281. [PMID: 33318362 DOI: 10.4103/0028-3886.302468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is a considerable number of patients with epilepsy that have drug resistant epilepsy (DRE). An additional option for these patients is resective surgery of ictal onset zones. However, a significant portion of DRE patients have unidentified or unresectable ictal zones. For these patients, RNS is a potential treatment option. The RNS system is a closed loop system that delivers stimulation in response to ECoG changes at seizure foci. It is programmed with an algorithm capable of detecting specific patterns of epileptogenic activity and triggers focal stimulation to interrupt seizures. The long term monitoring potential of the RNS system allows for a better understanding of the circadian rhythms behind epilepsy.
Collapse
Affiliation(s)
- Shreya Mandloi
- Drexel University College of Medicine Student, Philadelphia, PA, USA
| | - Caio M Matias
- Post-Doctoral Fellow, Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA; Neurosurgeon, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wu Chengyuan
- Assistant Professor, Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| | - Ashwini Sharan
- Professor, Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| |
Collapse
|
17
|
Welch WP, Hect JL, Abel TJ. Case Report: Responsive Neurostimulation of the Centromedian Thalamic Nucleus for the Detection and Treatment of Seizures in Pediatric Primary Generalized Epilepsy. Front Neurol 2021; 12:656585. [PMID: 33995254 PMCID: PMC8113700 DOI: 10.3389/fneur.2021.656585] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Up to 20% of pediatric patients with primary generalized epilepsy (PGE) will not respond effectively to medication for seizure control. Responsive neurostimulation (RNS) is a promising therapy for pediatric patients with drug-resistant epilepsy and has been shown to be an effective therapy for reducing seizure frequency and severity in adult patients. RNS of the centromedian nucleus of the thalamus may help to prevent loss of awareness during seizure activity in PGE patients with absence seizures. Here we present a 16-year-old male, with drug-resistant PGE with absence seizures, characterized by 3 Hz spike-and-slow-wave discharges on EEG, who achieved a 75% reduction in seizure frequency following bilateral RNS of the centromedian nuclei. At 6-months post-implant, this patient reported complete resolution of the baseline daily absence seizure activity, and decrease from 3-4 generalized convulsive seizures per month to 1 per month. RNS recordings showed well-formed 3 Hz spike-wave discharges in bilateral CM nuclei, further supporting the notion that clinically relevant ictal discharges in PGE can be detected in CM. This report demonstrates that CM RNS can detect PGE-related seizures in the CM nucleus and deliver therapeutic stimulation.
Collapse
Affiliation(s)
- William P Welch
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jasmine L Hect
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Brain-responsive corticothalamic stimulation in the centromedian nucleus for the treatment of regional neocortical epilepsy. Epilepsy Behav 2020; 112:107354. [PMID: 32919199 DOI: 10.1016/j.yebeh.2020.107354] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of the study was to determine if corticothalamic responsive stimulation targeting the centromedian nucleus of the thalamus (CMT) is a potential treatment for neocortical epilepsies with regional onsets. METHODS We assessed efficacy and safety of CMT and neocortical responsive stimulation, detection, and stimulation programming, methods for implantation, and location and patterns of electrographic seizure onset and spread in 7 patients with medically intractable focal seizures with a regional neocortical onset. RESULTS The median follow-up duration was 17 months (average: 17 months, range: 8-28 months). The median % reduction in disabling seizures (excludes auras) in the 7 patients was 88% (mean: 80%, range: 55-100%). The median % reduction in all seizure types (disabling + auras) was 73% (mean: 67%, range: 15-94%). There were no adverse events related to implantation of the responsive neurostimulator and leads or related to the delivery of responsive stimulation. Stimulation-related contralateral paresthesias were addressed by adjusting stimulation parameters in the clinic during stimulation testing. Electrographic seizures were detected in the CMT and neocortex in all seven patients. Four patients had simultaneous or near simultaneous seizure onsets in the neocortex and CMT and three had onsets in the neocortex with spread to the CMT. CONCLUSION In this small series of patients with medically intractable focal seizures and regional neocortical onset, responsive neurostimulation to the neocortex and CMT improved seizure control and was well tolerated. SIGNIFICANCE Responsive corticothalamic neurostimulation of the CMT and neocortex is a potential treatment for patients with regional neocortical epilepsies.
Collapse
|
19
|
Foit NA, Bernasconi A, Ladbon-Bernasconi N. Contributions of Imaging to Neuromodulatory Treatment of Drug-Refractory Epilepsy. Brain Sci 2020; 10:E700. [PMID: 33023078 PMCID: PMC7601437 DOI: 10.3390/brainsci10100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Epilepsy affects about 1% of the world's population, and up to 30% of all patients will ultimately not achieve freedom from seizures with anticonvulsive medication alone. While surgical resection of a magnetic resonance imaging (MRI) -identifiable lesion remains the first-line treatment option for drug-refractory epilepsy, surgery cannot be offered to all. Neuromodulatory therapy targeting "seizures" instead of "epilepsy" has emerged as a valuable treatment option for these patients, including invasive procedures such as deep brain stimulation (DBS), responsive neurostimulation (RNS) and peripheral approaches such as vagus nerve stimulation (VNS). The purpose of this review is to provide in-depth information on current concepts and evidence on network-level aspects of drug-refractory epilepsy. We reviewed the current evidence gained from studies utilizing advanced imaging methodology, with a specific focus on their contributions to neuromodulatory therapy.
Collapse
Affiliation(s)
- Niels Alexander Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, D-79106 Freiburg, Germany
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
| | - Neda Ladbon-Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
| |
Collapse
|
20
|
Xue J, Gu X, Ni T. Auto-Weighted Multi-View Discriminative Metric Learning Method With Fisher Discriminative and Global Structure Constraints for Epilepsy EEG Signal Classification. Front Neurosci 2020; 14:586149. [PMID: 33132835 PMCID: PMC7550683 DOI: 10.3389/fnins.2020.586149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Metric learning is a class of efficient algorithms for EEG signal classification problem. Usually, metric learning method deals with EEG signals in the single view space. To exploit the diversity and complementariness of different feature representations, a new auto-weighted multi-view discriminative metric learning method with Fisher discriminative and global structure constraints for epilepsy EEG signal classification called AMDML is proposed to promote the performance of EEG signal classification. On the one hand, AMDML exploits the multiple features of different views in the scheme of the multi-view feature representation. On the other hand, considering both the Fisher discriminative constraint and global structure constraint, AMDML learns the discriminative metric space, in which the intraclass EEG signals are compact and the interclass EEG signals are separable as much as possible. For better adjusting the weights of constraints and views, instead of manually adjusting, a closed form solution is proposed, which obtain the best values when achieving the optimal model. Experimental results on Bonn EEG dataset show AMDML achieves the satisfactory results.
Collapse
Affiliation(s)
- Jing Xue
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiaoqing Gu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
| | - Tongguang Ni
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
| |
Collapse
|
21
|
Ni T, Gu X, Zhang C. An Intelligence EEG Signal Recognition Method via Noise Insensitive TSK Fuzzy System Based on Interclass Competitive Learning. Front Neurosci 2020; 14:837. [PMID: 33013284 PMCID: PMC7499470 DOI: 10.3389/fnins.2020.00837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022] Open
Abstract
Epilepsy is an abnormal function disease of movement, consciousness, and nerve caused by abnormal discharge of brain neurons in the brain. EEG is currently a very important tool in the process of epilepsy research. In this paper, a novel noise-insensitive Takagi-Sugeno-Kang (TSK) fuzzy system based on interclass competitive learning is proposed for EEG signal recognition. First, a possibilistic clustering in Bayesian framework with interclass competitive learning called PCB-ICL is presented to determine antecedent parameters of fuzzy rules. Inherited by the possibilistic c-means clustering, PCB-ICL is noise insensitive. PCB-ICL learns cluster centers of different classes in a competitive relationship. The obtained clustering centers are attracted by the samples of the same class and also excluded by the samples of other classes and pushed away from the heterogeneous data. PCB-ICL uses the Metropolis-Hastings method to obtain the optimal clustering results in an alternating iterative strategy. Thus, the learned antecedent parameters have high interpretability. To further promote the noise insensitivity of rules, the asymmetric expectile term and Ho-Kashyap procedure are adopted to learn the consequent parameters of rules. Based on the above ideas, a TSK fuzzy system is proposed and is called PCB-ICL-TSK. Comprehensive experiments on real-world EEG data reveal that the proposed fuzzy system achieves the robust and effective performance for EEG signal recognition.
Collapse
Affiliation(s)
| | - Xiaoqing Gu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
| | | |
Collapse
|
22
|
Zaveri HP, Schelter B, Schevon CA, Jiruska P, Jefferys JGR, Worrell G, Schulze-Bonhage A, Joshi RB, Jirsa V, Goodfellow M, Meisel C, Lehnertz K. Controversies on the network theory of epilepsy: Debates held during the ICTALS 2019 conference. Seizure 2020; 78:78-85. [PMID: 32272333 DOI: 10.1016/j.seizure.2020.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022] Open
Abstract
Debates on six controversial topics on the network theory of epilepsy were held during two debate sessions, as part of the International Conference for Technology and Analysis of Seizures, 2019 (ICTALS 2019) convened at the University of Exeter, UK, September 2-5 2019. The debate topics were (1) From pathologic to physiologic: is the epileptic network part of an existing large-scale brain network? (2) Are micro scale recordings pertinent for defining the epileptic network? (3) From seconds to years: do we need all temporal scales to define an epileptic network? (4) Is it necessary to fully define the epileptic network to control it? (5) Is controlling seizures sufficient to control the epileptic network? (6) Does the epileptic network want to be controlled? This article, written by the organizing committee for the debate sessions and the debaters, summarizes the arguments presented during the debates on these six topics.
Collapse
Affiliation(s)
- Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, UK
| | | | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Gregory Worrell
- Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rasesh B Joshi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, UK; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Christian Meisel
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA; Department of Neurology, University Clinic Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany; Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Str. 7, 53175 Bonn, Germany.
| |
Collapse
|
23
|
Ruoff L, Jarosiewicz B, Zak R, Tcheng TK, Neylan TC, Rao VR. Sleep disruption is not observed with brain-responsive neurostimulation for epilepsy. Epilepsia Open 2020; 5:155-165. [PMID: 32524041 PMCID: PMC7278540 DOI: 10.1002/epi4.12382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/15/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Neurostimulation devices that deliver electrical impulses to the nervous system are widely used to treat seizures in patients with medically refractory epilepsy, but the effects of these therapies on sleep are incompletely understood. Vagus nerve stimulation can contribute to obstructive sleep apnea, and thalamic deep brain stimulation can cause sleep disruption. A device for brain-responsive neurostimulation (RNS® System, NeuroPace, Inc) is well tolerated in clinical trials, but potential effects on sleep are unknown. METHODS Six adults with medically refractory focal epilepsy treated for at least six months with the RNS System underwent a single night of polysomnography (PSG). RNS System lead locations included mesial temporal and neocortical targets. Sleep stages and arousals were scored according to standard guidelines. Stimulations delivered by the RNS System in response to detections of epileptiform activity were identified by artifacts on scalp electroencephalography. RESULTS One subject was excluded for technical reasons related to unreliable identification of stimulation artifact on EEG during PSG. In the remaining five subjects, PSG showed fragmented sleep with frequent arousals. Arousal histograms aligned to stimulations revealed a significant peak in arousals just before stimulation. In one of these subjects, the arousal peak began before stimulation and extended ~1 seconds after stimulation. A peak in arousals occurring only after stimulation was not observed. SIGNIFICANCE In this small cohort of patients, brain-responsive neurostimulation does not appear to disrupt sleep. If confirmed in larger studies, this could represent a potential clinical advantage of brain-responsive neurostimulation over other neurostimulation modalities.
Collapse
Affiliation(s)
- Leslie Ruoff
- San Francisco Veterans Affairs Health Care SystemSan FranciscoCAUSA
| | | | - Rochelle Zak
- University of California San Francisco Sleep Disorders CenterSan FranciscoCAUSA
| | | | - Thomas C. Neylan
- San Francisco Veterans Affairs Health Care SystemSan FranciscoCAUSA,Department of PsychiatryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Vikram R. Rao
- Department of Neurology and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
24
|
Gummadavelli A, Quraishi IH, Gerrard JL. Responsive Neurostimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Ma BB, Fields MC, Knowlton RC, Chang EF, Szaflarski JP, Marcuse LV, Rao VR. Responsive neurostimulation for regional neocortical epilepsy. Epilepsia 2019; 61:96-106. [PMID: 31828780 DOI: 10.1111/epi.16409] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Surgical resection of seizure-producing brain tissue is a gold standard treatment for drug-resistant focal epilepsy. However, several patient-specific factors can preclude resective surgery, including a spatially extensive ("regional") seizure-onset zone (SOZ). For such patients, responsive neurostimulation (RNS) represents a potential treatment, but its efficacy has not been investigated in this population. METHODS We performed a multicenter retrospective cohort study of patients (N = 30) with drug-resistant focal epilepsy and a regional neocortical SOZ delineated by intracranial monitoring who were treated with the RNS System for at least 6 months. RNS System leads were placed at least 1-cm apart over the SOZ, and most patients were treated with a lead-to-lead stimulation pathway. Five patients underwent partial resection of the SOZ concurrent with RNS System implantation. We assessed change in seizure frequency relative to preimplant baseline and evaluated correlation between clinical outcome and stimulation parameters. RESULTS Median follow-up duration was 21.5 months (range 6-52). Median reduction in clinical seizure frequency was 75.5% (interquartile range [IQR] 40%-93.9%). There was no significant difference in outcome between patients treated with and without concurrent partial resection. Most patients were treated with low charge densities (1-2.5 µC/cm2 ), but charge density, interlead distance, and duration of treatment were not significantly correlated with outcome. SIGNIFICANCE RNS is a feasible and effective treatment in patients with drug-resistant regional neocortical seizures. Prospective studies in larger cohorts are necessary to determine optimal lead configuration and stimulation parameters, although our results suggest that lead-to-lead stimulation and low charge density may be effective in some patients.
Collapse
Affiliation(s)
- Brandy B Ma
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert C Knowlton
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jerzy P Szaflarski
- Department of Neurology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AB, USA
| | - Lara V Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Elder C, Friedman D, Devinsky O, Doyle W, Dugan P. Responsive neurostimulation targeting the anterior nucleus of the thalamus in 3 patients with treatment-resistant multifocal epilepsy. Epilepsia Open 2019; 4:187-192. [PMID: 30868130 PMCID: PMC6398101 DOI: 10.1002/epi4.12300] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
Electrical stimulation in the anterior nucleus of the thalamus (ANT) has previously been found to be efficacious for reducing seizure frequency in patients with epilepsy. Bilateral deep brain stimulation (DBS) of the ANT is an open-loop system that can be used in the management of treatment-resistant epilepsy. In contrast, the responsive neurostimulation (RNS) system is a closed-loop device that delivers treatment in response to prespecified electrocorticographic triggers. The efficacy and safety of RNS targeting the ANT is unknown. We describe 3 patients with treatment-resistant multifocal epilepsy who were implanted with an RNS system, which included unilateral stimulation of the ANT. After >33 months of follow-up, there were no adverse effects on mood, memory or behavior. Two patients had ≥50% reduction in disabling seizures and one patient had a 50% reduction compared to pretreatment baseline. Although reduction in seizure frequency has been modest to date, these findings support responsive neurostimulation of the ANT as feasible, safe, and well-tolerated. Further studies are needed to determine optimal stimulation parameters.
Collapse
Affiliation(s)
- Christopher Elder
- Department of Neurology and Comprehensive Epilepsy CenterNYU Langone School of MedicineNew YorkNew York
- Department of NeurologyUCLA Seizure Disorder CenterLos AngelesCalifornia
| | - Daniel Friedman
- Department of Neurology and Comprehensive Epilepsy CenterNYU Langone School of MedicineNew YorkNew York
| | - Orrin Devinsky
- Department of Neurology and Comprehensive Epilepsy CenterNYU Langone School of MedicineNew YorkNew York
| | - Werner Doyle
- Department of NeurosurgeryNYU Langone School of MedicineNew YorkNew York
| | - Patricia Dugan
- Department of Neurology and Comprehensive Epilepsy CenterNYU Langone School of MedicineNew YorkNew York
| |
Collapse
|