1
|
Yamasaki R. Connexins Control Glial Inflammation in Various Neurological Diseases. Int J Mol Sci 2023; 24:16879. [PMID: 38069203 PMCID: PMC10706219 DOI: 10.3390/ijms242316879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Connexins (Cxs) form gap junctions through homotypic/heterotypic oligomerization. Cxs are initially synthesized in the endoplasmic reticulum, then assembled as hexamers in the Golgi apparatus before being integrated into the cell membrane as hemichannels. These hemichannels remain closed until they combine to create gap junctions, directly connecting neighboring cells. Changes in the intracellular or extracellular environment are believed to trigger the opening of hemichannels, creating a passage between the inside and outside of the cell. The size of the channel pore depends on the Cx isoform and cellular context-specific effects such as posttranslational modifications. Hemichannels allow various bioactive molecules, under ~1 kDa, to move in and out of the host cell in the direction of the electrochemical gradient. In this review, we explore the fundamental roles of Cxs and their clinical implications in various neurological dysfunctions, including hereditary diseases, ischemic brain disorders, degenerative conditions, demyelinating disorders, and psychiatric illnesses. The influence of Cxs on the pathomechanisms of different neurological disorders varies depending on the circumstances. Hemichannels are hypothesized to contribute to proinflammatory effects by releasing ATP, adenosine, glutamate, and other bioactive molecules, leading to neuroglial inflammation. Modulating Cxs' hemichannels has emerged as a promising therapeutic approach.
Collapse
Affiliation(s)
- Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Connexin 30 Deficiency Ameliorates Disease Progression at the Early Phase in a Mouse Model of Amyotrophic Lateral Sclerosis by Suppressing Glial Inflammation. Int J Mol Sci 2022; 23:ijms232416046. [PMID: 36555685 PMCID: PMC9782489 DOI: 10.3390/ijms232416046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Connexin 30 (Cx30), which forms gap junctions between astrocytes, regulates cell adhesion and migration, and modulates glutamate transport. Cx30 is upregulated on activated astroglia in central nervous system inflammatory lesions, including spinal cord lesions in mutant superoxide dismutase 1 (mSOD1) transgenic amyotrophic lateral sclerosis (ALS) model mice. Here, we investigated the role of Cx30 in mSOD1 mice. Cx30 was highly expressed in the pre-onset stage in mSOD1 mice. mSOD1 mice with knockout (KO) of the Cx30 gene (Cx30KO-mSOD1 mice) showed delayed disease onset and tended to have an extended survival period (log-rank, p = 0.09). At the progressive and end stages of the disease, anterior horn cells were significantly preserved in Cx30KO-mSOD1 mice. In lesions of these mice, glial fibrillary acidic protein/C3-positive inflammatory astroglia were decreased. Additionally, the activation of astrocytes in Cx30KO-mSOD1 mice was reduced compared with mSOD1 mice by gene expression microarray. Furthermore, expression of connexin 43 at the pre-onset stage was downregulated in Cx30KO-mSOD1 mice. These findings suggest that reduced expression of astroglial Cx30 at the early disease stage in ALS model mice protects neurons by attenuating astroglial inflammation.
Collapse
|
3
|
Angeli S, Kousiappa I, Stavrou M, Sargiannidou I, Georgiou E, Papacostas SS, Kleopa KA. Altered Expression of Glial Gap Junction Proteins Cx43, Cx30, and Cx47 in the 5XFAD Model of Alzheimer's Disease. Front Neurosci 2020; 14:582934. [PMID: 33117125 PMCID: PMC7575794 DOI: 10.3389/fnins.2020.582934] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Glial gap junction proteins, called connexins (Cxs), form gap junctions in the central nervous system (CNS) to allow the bidirectional cytosolic exchange of molecules between adjacent cells. Their involvement in inheritable diseases and the use of experimental animal models that closely mimic such diseases revealed the critical role of glial GJs in myelination and homeostasis. Cxs are also implicated in acquired demyelinating disorders, such as Multiple Sclerosis (MS) and Alzheimer's disease (AD). Animal and human studies have revealed a role of the astrocytic Cx43 in the progression of AD but the role of Cx47, which is the main partner of Cx43 in the astrocyte-oligodendrocyte GJs is still unknown. The aim of this study was to investigate the astrocytic connexins, Cx43 and Cx30 in relation to oligodendrocytic Cx47 in the cortex and thalamus of the 5XFAD mouse model of AD. The model was characterized by increased Aβ deposition, gliosis, neuronal loss, and memory impairment. Compared to wild-type mice, Cx43 and Cx30 showed increased immunoreactivity in older 5XFAD mice, reflecting astrogliosis, while Cx47 immunoreactivity was reduced. Moreover, Cx47 GJ plaques showed reduced colocalization with Cx43 plaques. Oligodendrocyte precursor cells (OPCs) and mature oligodendrocyte populations were also depleted, and myelin deficits were observed. Our findings indicate reduced astrocyte-oligodendrocyte gap junction connectivity and possibly a shift in Cx43 expression toward astrocyte-astrocyte gap junctions and/or hemichannels, that could impair oligodendrocyte homeostasis and myelination. However, other factors, such as Aβ toxicity, could directly affect oligodendrocyte survival in AD. Our study provides evidence that Cxs might have implications in the progression of AD, although the role of oligodendrocyte Cxs in AD requires further investigation.
Collapse
Affiliation(s)
- Stella Angeli
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marios Stavrou
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Cyprus, Nicosia, Cyprus
| | - Irene Sargiannidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Georgiou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Savvas S. Papacostas
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Dementia and Cognitive Disorders Center, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Kleopas A. Kleopa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Neuromuscular disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|