1
|
McDonald C, El Yaakoubi NA, Lennon O. Brain (EEG) and muscle (EMG) activity related to 3D sit-to-stand kinematics in healthy adults and in central neurological pathology - A systematic review. Gait Posture 2024; 113:374-397. [PMID: 39068871 DOI: 10.1016/j.gaitpost.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The sit-to-stand transfer is a fundamental functional movement during normal activities of daily living. Central nervous system disorders can negatively impact the execution of sit-to-stand transfers, often impeding successful completion. Despite its importance, the neurophysiological basis at muscle (electromyography (EMG)) and brain (electroencephalography (EEG)) level as related to the kinematic movement is not well understood. OBJECTIVES This review synthesises the published literature addressing central and peripheral neural activity during 3D kinematic capture of sit-to-stand transfers. METHODS A pre-registered systematic review was conducted. Electronic databases (PubMed, CINAHL Plus, Web of Science, Scopus and EMBASE) were searched from inception using search operators that included sit-to-stand, kinematics and EMG and/or EEG. The search was not limited by study type but was limited to populations comprising of healthy individuals or individuals with a central neurological pathology. RESULTS From a total of 28,770 identified papers, 59 were eligible for inclusion. Ten of these 59 studies received a moderate quality rating; with the remainder rated as weak using the Effective Public Health Practice Project tool. Fifty-eight studies captured kinematic data of sit-to-stand with associated EMG activity only and one study captured kinematics with co-registered EMG and EEG data. Fifty-six studies examined sit-to-stand transfer in healthy individuals, reporting four dynamic movement phases and three muscle synergies commonly used by most individuals to stand-up. Pre-movement EEG activity was reported in one study with an absence of data during execution. Eight studies examined participants following stroke and two examined participants with Parkinson's disease, both reporting no statistically significant differences between their kinematics and muscle activity and those of healthy controls. SIGNIFICANCE Little is known about the neural basis of the sit-to-stand transfer at brain level with limited focus in central neurological pathology. This poses a barrier to targeted mechanistic-based rehabilitation of the sit-to-stand movement in neurological populations.
Collapse
Affiliation(s)
- Caitlin McDonald
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.
| | | | - Olive Lennon
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
van Bergem JS, van Doorn PF, Hoogendoorn EM, Geerse DJ, Roerdink M. Gait and Balance Assessments with Augmented Reality Glasses in People with Parkinson's Disease: Concurrent Validity and Test-Retest Reliability. SENSORS (BASEL, SWITZERLAND) 2024; 24:5485. [PMID: 39275397 PMCID: PMC11398006 DOI: 10.3390/s24175485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
State-of-the-art augmented reality (AR) glasses record their 3D pose in space, enabling measurements and analyses of clinical gait and balance tests. This study's objective was to evaluate concurrent validity and test-retest reliability for common clinical gait and balance tests in people with Parkinson's disease: Five Times Sit To Stand (FTSTS) and Timed Up and Go (TUG) tests. Position and orientation data were collected in 22 participants with Parkinson's disease using HoloLens 2 and Magic Leap 2 AR glasses, from which test completion durations and durations of distinct sub-parts (e.g., sit to stand, turning) were derived and compared to reference systems and over test repetitions. Regarding concurrent validity, for both tests, an excellent between-systems agreement was found for position and orientation time series (ICC(C,1) > 0.933) and test completion durations (ICC(A,1) > 0.984). Between-systems agreement for FTSTS (sub-)durations were all excellent (ICC(A,1) > 0.921). TUG turning sub-durations were excellent (turn 1, ICC(A,1) = 0.913) and moderate (turn 2, ICC(A,1) = 0.589). Regarding test-retest reliability, the within-system test-retest variation in test completion times and sub-durations was always much greater than the between-systems variation, implying that (sub-)durations may be derived interchangeably from AR and reference system data. In conclusion, AR data are of sufficient quality to evaluate gait and balance aspects in people with Parkinson's disease, with valid quantification of test completion durations and sub-durations of distinct FTSTS and TUG sub-parts.
Collapse
Affiliation(s)
- Jara S van Bergem
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| | - Pieter F van Doorn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| | - Eva M Hoogendoorn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| | - Daphne J Geerse
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| | - Melvyn Roerdink
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
3
|
Herzog M, Krafft FC, Stetter BJ, d'Avella A, Sloot LH, Stein T. Rollator usage lets young individuals switch movement strategies in sit-to-stand and stand-to-sit tasks. Sci Rep 2023; 13:16901. [PMID: 37803010 PMCID: PMC10558536 DOI: 10.1038/s41598-023-43401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
The transitions between sitting and standing have a high physical and coordination demand, frequently causing falls in older individuals. Rollators, or four-wheeled walkers, are often prescribed to reduce lower-limb load and to improve balance but have been found a fall risk. This study investigated how rollator support affects sit-to-stand and stand-to-sit movements. Twenty young participants stood up and sat down under three handle support conditions (unassisted, light touch, and full support). As increasing task demands may affect coordination, a challenging floor condition (balance pads) was included. Full-body kinematics and ground reaction forces were recorded, reduced in dimensionality by principal component analyses, and clustered by k-means into movement strategies. Rollator support caused the participants to switch strategies, especially when their balance was challenged, but did not lead to support-specific strategies, i.e., clusters that only comprise light touch or full support trials. Three strategies for sit-to-stand were found: forward leaning, hybrid, and vertical rise; two in the challenging condition (exaggerated forward and forward leaning). For stand-to-sit, three strategies were found: backward lowering, hybrid, and vertical lowering; two in the challenging condition (exaggerated forward and forward leaning). Hence, young individuals adjust their strategy selection to different conditions. Future studies may apply this methodology to older individuals to recommend safe strategies and ultimately reduce falls.
Collapse
Affiliation(s)
- Michael Herzog
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Engler-Bunte Ring 15, 76131, Karlsruhe, Germany.
- HEiKA-Heidelberg Karlsruhe Strategic Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Frieder C Krafft
- HEiKA-Heidelberg Karlsruhe Strategic Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Optimization, Robotics, and Biomechanics, Institute of Computer Engineering, Heidelberg University, Heidelberg, Germany
- Center of Prevention, Diagnostic and Performance, Center of Orthopaedics Hohenlohe, Künzelsau, Germany
| | - Bernd J Stetter
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Engler-Bunte Ring 15, 76131, Karlsruhe, Germany
- Sports Orthopedics, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Università di Messina, Messina, Italy
| | - Lizeth H Sloot
- HEiKA-Heidelberg Karlsruhe Strategic Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Optimization, Robotics, and Biomechanics, Institute of Computer Engineering, Heidelberg University, Heidelberg, Germany
| | - Thorsten Stein
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Engler-Bunte Ring 15, 76131, Karlsruhe, Germany
- HEiKA-Heidelberg Karlsruhe Strategic Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
4
|
Rosales-Luengas Y, Espinosa-Espejel KI, Lopéz-Gutiérrez R, Salazar S, Lozano R. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115252. [PMID: 37299979 DOI: 10.3390/s23115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
This paper presents the development of an instrumented exoskeleton with baropodometry, electromyography, and torque sensors. The six degrees of freedom (Dof) exoskeleton has a human intention detection system based on a classifier of electromyographic signals coming from four sensors placed in the muscles of the lower extremity together with baropodometric signals from four resistive load sensors placed at the front and rear parts of both feet. In addition, the exoskeleton is instrumented with four flexible actuators coupled with torque sensors. The main objective of the paper was the development of a lower limb therapy exoskeleton, articulated at hip and knees to allow the performance of three types of motion depending on the detected user's intention: sitting to standing, standing to sitting, and standing to walking. In addition, the paper presents the development of a dynamical model and the implementation of a feedback control in the exoskeleton.
Collapse
Affiliation(s)
- Yukio Rosales-Luengas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. IPN #2508, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Karina I Espinosa-Espejel
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. IPN #2508, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Ricardo Lopéz-Gutiérrez
- Investigador por México-Consejo Nacional de Humanidades, Ciencias y Tegnologías (IXM-CONAHCYT), Av. de los Insurgentes Sur #1582, Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico
| | - Sergio Salazar
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. IPN #2508, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Rogelio Lozano
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. IPN #2508, San Pedro Zacatenco, Mexico City 07360, Mexico
- CNRS UMR 7253 Heudiasyc, Université de Technologie de Compiegne, 60203 Compiegne, France
| |
Collapse
|
5
|
Safari N, Alemzadeh M, Majlesi M, Farahpour N, Mansoorizadeh M. Measuring the Effect of Vision on the Synergy of Lower Extremity Muscles during Walking using Nonnegative Matrix Factorization (NNMF) Algorithm Method. Appl Bionics Biomech 2023; 2023:5501871. [PMID: 37114106 PMCID: PMC10129435 DOI: 10.1155/2023/5501871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Lack of visual information in blind people during walking can affect the choice of muscle synergy from among the many incoming messages that reach the central nervous system (CNS). This study aimed to determine the effect of vision on the synergy of lower limb muscles during walking using the nonnegative matrix factorization algorithm (NNMF). Methods Ten blind people and 10 people with normal vision participated in this study. Activities of involved muscles were recorded during walking. Muscle synergy matrix and synergy activation coefficient were calculated using the NNMF algorithm, while the variance accounted for criterion was used to determine the number of synergies required during walking. In order to assess the similarity of muscle synergy pattern and the relative weight of each muscle in each synergy in each group, Pearson correlation and independent samples t-test at a significance level of α ≤ 0.05 were used. Results Four muscle synergies were extracted from EMG data during walking. The first (r = 0.431) and the second (r = 0.457) synergy patterns showed a moderate correlation between the two groups. However, the third (r = 0.302) and the fourth (r = 0.329) synergy patterns showed a weak correlation between the two groups. In the blind group, the relative weight of the muscles in the first synergy was significant for the external extensor muscle (P = 0.023), and in the second synergy for the biceps femoris. Also, in the third synergy, the relative weight was found to be significant in none of the muscles. In the fourth synergy, however, the relative weight of external extensor muscle in the blind group showed a significant decrease, as compared to the group with normal vision. Conclusions These changes can be the strategy of the CNS to preserve the optimal functioning in the motor system of blind people.
Collapse
Affiliation(s)
- Nasim Safari
- Department of Kinesiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Mahboubeh Alemzadeh
- Department of Kinesiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Majlesi
- Department of Sport Biomechanics, Faculty of Humanities, Islamic Azad University of Hamadan, Hamedan, Iran
| | - Nader Farahpour
- Department of Kinesiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | | |
Collapse
|
6
|
Muñoz D, De Marchis C, Gizzi L, Severini G. Predictive simulation of sit-to-stand based on reflexive-controllers. PLoS One 2022; 17:e0279300. [PMID: 36584117 PMCID: PMC9803124 DOI: 10.1371/journal.pone.0279300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/04/2022] [Indexed: 12/31/2022] Open
Abstract
Sit-to-stand can be defined as a set of movements that allow humans to rise from a sitting position to a bipedal standing pose. These movements, often categorized as four distinct kinematic phases, must be coordinated for assuring personal autonomy and can be compromised by ageing or physical impairments. To solve this, rehabilitation techniques and assistive devices demand proper description of the principles that lead to the correct completion of this motor task. While the muscular dynamics of the sit-to-stand task have been analysed, the underlying neural activity remains unknown and largely inaccessible for conventional measurement systems. Predictive simulations can propose motor controllers whose plausibility is evaluated through the comparison between simulated and experimental kinematics. In the present work, we modelled an array of reflexes that originate muscle activations as a function of proprioceptive and vestibular feedback. This feedback encodes torso position, displacement velocity and acceleration of a modelled human body with 7 segments, 9 degrees of freedom, and 50 actuators. We implemented two controllers: a four-phases controller where the reflex gains and composition vary depending on the kinematic phase, and a simpler two-phases controller, where three of the kinematic phases share the same reflex gains. Gains were optimized using Covariance Matrix Adaptation. The results of the simulations reveal, for both controllers, human-like sit-to-stand movement, with joint angles and muscular activity comparable to experimental data. The results obtained with the simplified two-phases controller indicate that a simple set of reflexes could be sufficient to drive this motor task.
Collapse
Affiliation(s)
- David Muñoz
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
- Insight Centre for Data Analytics, Dublin, Ireland
| | - Cristiano De Marchis
- Department of Engineering, University of Messina, Messina, Italy
- Department of Engineering, Roma Tre University, Rome, Italy
| | - Leonardo Gizzi
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
- Insight Centre for Data Analytics, Dublin, Ireland
- Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Yoshida K, An Q, Hamada H, Yamakawa H, Tamura Y, Yamashita A, Asama H. Analysis of Muscle Activity in the Sit-to-Stand Motion When Knee Movability is Disturbed. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sit-to-stand motion is an important daily activity, and disability of motion can significantly reduce quality of life. Therefore, it is important to understand the mechanism of sit-to-stand motion in order to prevent such scenarios. The sit-to-stand motion was found to be generated by four muscle groups, through muscle synergy. However, it is unclear how muscle synergy can be controlled. Human sit-to-stand motion may be planned based on body condition before motion. In this study, we aimed to clarify the relationship between body condition and muscle activity during the sit-to-stand motion. Accordingly, we measured the muscle activity when knee movability was disturbed as a condition of body change. We also measured the muscle activity during normal sit-to-stand motion and sit-to-stand motion with disturbed knee movability using surface electromyography. Subsequently, we extracted the muscle synergy from the measured muscle activity and compared the activity levels of muscle synergy. The results revealed that muscle activity contributing to forward bending increased and that contributing to the rise of the hip and stabilization decreased when knee movability was disturbed. These results suggest that humans compensate for disturbed knee movability with forward momentum and bending motion. Moreover, this implies that humans adjust their motion to various environments or body conditions by adjusting the level of forward bending activity.
Collapse
|
8
|
Sultan N, Mughal AM, Islam MNU, Malik FM. High-gain observer-based nonlinear control scheme for biomechanical sit to stand movement in the presence of sensory feedback delays. PLoS One 2021; 16:e0256049. [PMID: 34383831 PMCID: PMC8360614 DOI: 10.1371/journal.pone.0256049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
Sit-to-stand movement (STS) is a mundane activity, controlled by the central-nervous-system (CNS) via a complex neurophysiological mechanism that involves coordination of limbs for successful execution. Detailed analysis and accurate simulations of STS task have significant importance in clinical intervention, rehabilitation process, and better design for assistive devices. The CNS controls STS motion by taking inputs from proprioceptors. These input signals suffer delay in transmission to CNS making movement control and coordination more complex which may lead to larger body exertion or instability. This paper deals with the problem of STS movement execution in the presence of proprioceptive feedback delays in joint position and velocity. We present a high-gain observer (HGO) based feedback linearization control technique to mimic the CNS in controlling the STS transfer. The HGO estimates immeasurable delayed states to generate input signals for feedback. The feedback linearization output control law generates the passive torques at joints to execute the STS movement. The H2 dynamic controller calculates the optimal linear gains by using physiological variables. The whole scheme is simulated in MATLAB/Simulink. The simulations illustrate physiologically improved results. The ankle, knee, and hip joint position profiles show a high correlation of 0.91, 0.97, 0.80 with the experimentally generated reference profiles. The faster observer dynamics and global boundness of controller result in compensation of delays. The low error and high correlation of simulation results demonstrate (1) the reliability and effectiveness of the proposed scheme for customization of human models and (2) highlight the fact that for detailed analysis and accurate simulations of STS movement the modeling scheme must consider nonlinearities of the system.
Collapse
Affiliation(s)
- Nadia Sultan
- Department of Electrical Engineering, Bahria University Islamabad, Islamabad, Pakistan
| | - Asif Mahmood Mughal
- Department of Electrical Engineering, Bahria University Islamabad, Islamabad, Pakistan
| | | | - Fahad Mumtaz Malik
- Department of Electrical Engineering, CE&ME National University of Sciences and Technology Islamabad, Islamabad, Pakistan
| |
Collapse
|
9
|
Takahashi J. Relationship between the ability to stand and physical function in stroke survivors with hemiplegia: a pilot study. JAPANESE JOURNAL OF COMPREHENSIVE REHABILITATION SCIENCE 2021; 12:4-8. [PMID: 37860213 PMCID: PMC10545037 DOI: 10.11336/jjcrs.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 10/21/2023]
Abstract
Takahashi J. Relationship between the ability to stand and physical function in stroke survivors with hemiplegia: a pilot study. Jpn J Compr Rehabil Sci 2021; 12: 4-8. Objective This study aimed to identify the physical functions necessary to enable stroke survivors with hemiplegia to stand from a chair. Methods Fifteen patients who had suffered a hemiplegic stroke were divided into two groups, the pull and unable groups, based on their ability to stand by pulling a handrail. Their motor palsy, Stroke Impairment Assessment Set, and unaffected muscle strength were assessed. Results Patients in the pull group had less motor palsy, higher muscle strength of the upper extremity on the unaffected side, and greater angle of ankle dorsiflexion on the affected side, compared to the patients in the unable group. Conclusion The function of the affected lower limb and the unaffected upper limb's muscle strength determines the ability of patients who have suffered a hemiplegic stroke to lift their body upwards while standing from a chair.
Collapse
Affiliation(s)
- Jumpei Takahashi
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan
| |
Collapse
|
10
|
Yang N, An Q, Kogami H, Yamakawa H, Tamura Y, Takahashi K, Kinomoto M, Yamasaki H, Itkonen M, Shibata-Alnajjar F, Shimoda S, Hattori N, Fujii T, Otomune H, Miyai I, Yamashita A, Asama H. Temporal Features of Muscle Synergies in Sit-to-Stand Motion Reflect the Motor Impairment of Post-Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2118-2127. [PMID: 31494552 DOI: 10.1109/tnsre.2019.2939193] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sit-to-stand (STS) motion is an important daily activity, and many post-stroke patients have difficulty performing STS motion. Previous studies found that there are four muscle synergies (synchronized muscle activations) in the STS motion of healthy adults. However, for post-stroke patients, it is unclear whether muscle synergies change and which features primarily reflect motor impairment. Here, we use a machine learning method to demonstrate that temporal features in two muscle synergies that contribute to hip rising and balance maintenance motion reflect the motor impairment of post-stroke patients. Analyzing the muscle synergies of age-matched healthy elderly people ( n = 12 ) and post-stroke patients ( n = 33 ), we found that the same four muscle synergies could account for the muscle activity of post-stroke patients. Also, we were able to distinguish post-stroke patients from healthy people on the basis of the temporal features of these muscle synergies. Furthermore, these temporal features were found to correlate with motor impairment of post-stroke patients. We conclude that post-stroke patients can still utilize the same number of muscle synergies as healthy people, but the temporal structure of muscle synergies changes as a result of motor impairment. This could lead to a new rehabilitation strategy for post-stroke patients that focuses on activation timing of muscle synergies.
Collapse
|