1
|
Zeng Y, Ahmed HGMD, Li X, Yang L, Pu X, Yang X, Yang T, Yang J. Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health. Molecules 2024; 29:3110. [PMID: 38999065 PMCID: PMC11243521 DOI: 10.3390/molecules29133110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Nutritional therapy, for example through beer, is the best solution to human chronic diseases. In this article, we demonstrate the physiological mechanisms of the functional ingredients in beer with health-promoting effects, based on the PubMed, Google, CNKI, and ISI Web of Science databases, published from 1997 to 2024. Beer, a complex of barley malt and hops, is rich in functional ingredients. The health effects of beer against 26 chronic diseases are highly similar to those of barley due to the physiological mechanisms of polyphenols (phenolic acids, flavonoids), melatonin, minerals, bitter acids, vitamins, and peptides. Functional beer with low purine and high active ingredients made from pure barley malt, as well as an additional functional food, represents an important development direction, specifically, ginger beer, ginseng beer, and coix-lily beer, as consumed by our ancestors ca. 9000 years ago. Low-purine beer can be produced via enzymatic and biological degradation and adsorption of purines, as well as dandelion addition. Therefore, this review paper not only reveals the physiological mechanisms of beer in overcoming chronic human diseases, but also provides a scientific basis for the development of functional beer with health-promoting effects.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Li'e Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Tao Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Jiazhen Yang
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| |
Collapse
|
2
|
Wang Z, Hu Q, Tian C, Wang R, Jiao Q, Chen F, Wu T, Wang J, Zhu Y, Liu A, Zhang W, Li J, Shen H. Prophylactic Effects of n-Acethylcysteine on Inflammation-induced Depression-like Behaviors in Mice. Neuroscience 2024; 549:42-54. [PMID: 38729599 DOI: 10.1016/j.neuroscience.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Depression, affecting individuals worldwide, is a prevalent mental disease, with an increasing incidence. Numerous studies have been conducted on depression, yet its pathogenesis remains elusive. Recent advancements in research indicate that disturbances in synaptic transmission, synaptic plasticity, and reduced neurotrophic factor expression significantly contribute to depression's pathogenesis. In our study, we utilized adult male C57BL/6J mice. Lipopolysaccharide (LPS) can induce both chronic and acute depression-like symptoms in mice, a widely used model for studying depression associated with inflammation. N-acetylcysteine (NAC) exhibits anti-inflammatory and ameliorative effects on depressive symptoms. This study sought to determine whether NAC use could mitigate inflammatory depressive behavior through the enhancement of synaptic transmission, synaptic plasticity, and increasing levels of brain-derived neurotrophic factor (BDNF). In this study, we discovered that in mice modeled with depression-like symptoms, the expression levels of dendrites, BDNF, and miniature excitatory postsynaptic potential (mEPSC) in glutamatergic neurons, as well as the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPARs) GluA1 and GluA2 subunits, were significantly decreased. These findings suggest an impairment in the synaptic transmission of glutamatergic neurons. Following treatment with NAC, the previously mentioned levels improved, indicating an enhancement in both synaptic transmission and synaptic plasticity. Our results suggest that NAC exerts a protective effect on mouse models of inflammatory depression, potentially through the enhancement of synaptic transmission and plasticity, as well as the restoration of neurotrophic factor expression. These findings offer vital animal experimental evidence supporting NAC's role in mitigating inflammatory depressive behaviors.
Collapse
Affiliation(s)
- Zhenhuan Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China; Comprehensive Development Service Center, Tianjin Baodi District Health Commission, Tianjin, China
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ruipeng Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Feng Chen
- Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jialiang Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuxuan Zhu
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China.
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China.
| | - Hui Shen
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Ma Z, Yu Y, Gao M, Chen P, Hong H, Yu D, Liang Z, Bai Y, Ye Q, Wang Y, Huang G, Tan H. Protective Effect of Hop Ethyl Acetate Extract on Corticosterone-Induced PC12 and Improvement of Depression-like Behavior in Mice. ACS Chem Neurosci 2024; 15:1893-1903. [PMID: 38613492 DOI: 10.1021/acschemneuro.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Depression is a common mental disorder. In recent years, more and more attention has been paid to depression and its etiology and pathogenesis. This review aims to explore the neuroprotective and antidepressant effects of hop components. By establishing an in vitro cell damage model using PC12 cells induced by corticosterone (CORT) and an in vivo depression model through the intracranial injection of lipopolysaccharide (LPS) in mice, hop ethyl acetate extract (HEA) was used to study the protective effect and mechanism of HEA on neuronal cells in vitro and the antidepression effect and mechanism in vivo. The results showed that HEA increased the survival and decreased the rate of lactate dehydrogenase (LDH) release, apoptosis, and the ROS and NO content of CORT-induced PC12 cells. HEA alleviated depressive-like behavior, neuroinflammation, reduction of norepinephrine, and dendritic spines induced by intracerebroventricular injection of LPS in mice and increases the expression levels of BDNF, SNAP 25, and TrkB proteins without any significant side effects or toxicity. Hops demonstrated significant comprehensive utilization value, and this work provided an experimental basis for the role of hops in the treatment of depression and provided a basis for the development of HEA for antidepressant drugs or dietary therapy products.
Collapse
Affiliation(s)
- Ziwei Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Yuming Yu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Ming Gao
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Peng Chen
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Huixia Hong
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Dingle Yu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Zhenjiang Liang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yu Bai
- Center for Child Care and Mental Health, Shenzhen Pediatrics Institute of Shantou University Medical College Health, Shenzhen 518035, China
| | - Qinlian Ye
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518038, China
| | - Yachao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518038, China
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, and the Institute of Translational Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang Westroad, Futian District, Shenzhen 518035, China
| | - Hui Tan
- Center for Child Care and Mental Health, Shenzhen Pediatrics Institute of Shantou University Medical College Health, Shenzhen 518035, China
| |
Collapse
|
4
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
5
|
Kanatome A, Takara T, Umeda S, Ano Y. Effects of matured hop bitter acids on heart rate variability and cognitive performance: A randomized placebo-controlled crossover trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Yang X, Liu W, Dang P, Wang Y, Ge X, Huang X, Wang M, Zheng J, Ding X, Wang X. Decreased brain noradrenaline in minimal hepatic encephalopathy is associated with cognitive impairment in rats. Brain Res 2022; 1793:148041. [DOI: 10.1016/j.brainres.2022.148041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
|
7
|
Fukuda T, Akiyama S, Takahashi K, Iwadate Y, Ano Y. Effect of non-alcoholic beer containing matured hop bitter acids on mood states in healthy adults: A single-arm pilot study. Nurs Health Sci 2021; 24:7-16. [PMID: 34741379 PMCID: PMC9300118 DOI: 10.1111/nhs.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the effect of non-alcoholic beer containing matured hop bitter acids on mood states among healthy adults older than 20 years. This study was an open-label longitudinal intervention design in which each participant served as their control. For three weeks, we evaluated the effect of non-alcoholic beer containing 35 mg of matured hop bitter acids on mood, sleep quality, and work performance. The data of 97 participants (age range: 23-72 years, median age: 42) were analyzed. After the intervention, we found that matured hop bitter acids significantly improved total mood state, including anxiety, depression, fatigue, and vigor, compared with the baseline. Furthermore, sleep quality and absolute presenteeism were significantly improved after the intervention compared with the baseline. The present exploratory study suggested that 3-week supplementation with matured hop bitter acids improved mood and peripheral symptoms in persons of a wide range of ages. Although further investigation is needed, the findings suggested that non-alcoholic beer in daily life might become a choice for maintaining mood states. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Shiori Akiyama
- Kirin Central Institute, Kirin Holdings Company, Limited
| | | | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine
| | - Yasuhisa Ano
- Kirin Central Institute, Kirin Holdings Company, Limited
| |
Collapse
|
8
|
Redox and Anti-Inflammatory Properties from Hop Components in Beer-Related to Neuroprotection. Nutrients 2021; 13:nu13062000. [PMID: 34200665 PMCID: PMC8226943 DOI: 10.3390/nu13062000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Beer is a fermented beverage widely consumed worldwide with high nutritional and biological value due to its bioactive components. It has been described that both alcoholic and non-alcoholic beer have several nutrients derived from their ingredients including vitamins, minerals, proteins, carbohydrates, and antioxidants that make beer a potential functional supplement. Some of these compounds possess redox, anti-inflammatory and anticarcinogenic properties making the benefits of moderate beer consumption an attractive way to improve human health. Specifically, the hop cones used for beer brewing provide essential oils, bitter acids and flavonoids that are potent antioxidants and immune response modulators. This review focuses on the redox and anti-inflammatory properties of hop derivatives and summarizes the current knowledge of their neuroprotective effects.
Collapse
|
9
|
Fukuda T, Ohnuma T, Obara K, Kondo S, Arai H, Ano Y. Supplementation with Matured Hop Bitter Acids Improves Cognitive Performance and Mood State in Healthy Older Adults with Subjective Cognitive Decline. J Alzheimers Dis 2021; 76:387-398. [PMID: 32474473 PMCID: PMC7369117 DOI: 10.3233/jad-200229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Prevention of age-related cognitive decline and depression is becoming urgent because of rapid growing aging populations. Effects of vagal nerve activation on brain function by food ingredients are inadequately investigated; matured hop bitter acid (MHBA) administration reportedly improves cognitive function and depression via vagal nerve activation in model mice. OBJECTIVE We investigated the effects of MHBA supplementation on cognitive function and mood state in healthy older adults with perceived subjective cognitive decline. METHODS Using a randomized double-blind placebo-controlled trial design, 100 subjects (aged 45-69 years) were randomly assigned into placebo (n = 50) and MHBA (n = 50) groups, and received placebo or MHBA capsules daily for 12 weeks. RESULTS Symbol Digit Modalities Test (SDMT) score assessing divided attention at week 12 was significantly higher (p = 0.045) and β-endorphin at week 12 was significantly lower (p = 0.043) in the subjects receiving MHBA. Transthyretin in serum, a putative mild cognitive impairment marker, was significantly higher at week 12 in the MHBA group than in the placebo group (p = 0.048). Subgroup analysis classified by the subjective cognitive decline questionnaire revealed that in addition to improved SDMT scores, memory retrieval assessed using the standard verbal paired-associate learning tests and the Ray Verbal Learning Test at week 12 had significantly improved in the subgroup with perceived subjective cognitive decline and without requirement for medical assistance in the MHBA group compared with that in the placebo group. CONCLUSION This study suggested that MHBA intake improves cognitive function, attention, and mood state in older adults.
Collapse
Affiliation(s)
- Takafumi Fukuda
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kuniaki Obara
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| | | | - Heii Arai
- Department of Psychiatry, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yasuhisa Ano
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| |
Collapse
|
10
|
Nishimura M, Nomura Y, Egi M, Obata N, Tsunoda M, Mizobuchi S. Suppression of behavioral activity and hippocampal noradrenaline caused by surgical stress in type 2 diabetes model mice. BMC Neurosci 2020; 21:8. [PMID: 32066381 PMCID: PMC7027121 DOI: 10.1186/s12868-020-0556-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background There has been much discussion recently about the occurrence of neuropsychological complications during the perioperative period. Diabetes is known to be one of the metabolic risk factors. Although the number of patients with diabetes mellitus (DM) has been increasing, the pathophysiology of postoperative neuropsychological dysfunction in DM patients is still unclear. Recently, a deficiency of neurotransmitters, such as monoamines, was reported to be associated with mental disorders. Therefore, we investigated the effects of surgical stress on behavioral activity and hippocampal noradrenaline (NA) level in type 2 diabetes mellitus model (T2DM) mice. Methods Eighty-four 6-week-old male C57BL/6J mice were divided into four groups (non-diabetes, non-diabetes with surgery, T2DM, and T2DM with surgery groups). T2DM mice were established by feeding a high-fat diet (HFD) for 8 weeks. At 14 weeks of age, fifteen mice in each group underwent a series of behavioral tests including an open field (OF) test, a novel object recognition (NOR) test and a light–dark (LD) test. In the surgery groups, open abdominal surgery with manipulation of the intestine was performed 24 h before the behavioral tests as a surgical stress. Hippocampal noradrenaline (NA) concentration was examined in six mice in each group by high-performance liquid chromatography. The data were analyzed by the Mann–Whitney U test, and p values less than 0.05 were considered significant. Results The T2DM group showed significantly increased explorative activity in the NOR test (P = 0.0016) and significantly increased frequency of transition in the LD test (P = 0.043) compared with those in the non-diabetic group before surgery. In T2DM mice, surgical stress resulted in decreased total distance in the OF test, decreased explorative activity in the NOR test, and decreased frequency of transition in the LD test (OF: P = 0.015, NOR: P = 0.009, LD: P = 0.007) and decreased hippocampal NA (P = 0.015), but such differences were not observed in the non-diabetic mice. Conclusions Mice with T2DM induced by feeding an HFD showed increased behavioral activities, and surgical stress in T2DM mice caused postoperative hypoactivity and reduction of the hippocampal NA level.
Collapse
Affiliation(s)
- Momoka Nishimura
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Yuki Nomura
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Moritoki Egi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Norihiko Obata
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongou, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
11
|
Ma X, Zhu Z, Guo S, Duan J. The effect of deoxyschizandrin on chronic unpredictable mild stress-induced depression. Biotechnol Appl Biochem 2020; 68:52-59. [PMID: 31985079 DOI: 10.1002/bab.1893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
The purpose of the present study was to evaluate the antidepressant effect of deoxyschizandrin (DEO) in chronic unpredictable mild stress (CUMS)-induced mice. The mice were subjected to CUMS paradigm for 8 weeks. From the sixth week, the mice were intragastrically treated with DEO once daily for continuous 3 weeks. The behavior tests including sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test were conducted. Additionally, the expressions of TLR4, MyD88, TRAF6, p-NF-κBp65, NLRP3, cleaved caspase-1, cleaved IL-1β, GluR, and PSD95 in hippocampus were detected by western blot. The concentrations of IL-6 and TNF-α in hippocampus were determined by enzyme linked immune sorbent assay (ELISA). The dendritic spine density was observed by Golgi-Cox staining. As a result, the treatment with DEO relieved anhedonia in SPT, and reduced immobile duration in FST and TST. DEO treatment effectively attenuated the CUMS-caused alterations of TLR4, MyD88, TRAF6, p-NF-κBp65, NLRP3, cleaved caspase-1, cleaved IL-1β, GluR, and PSD95. Furthermore, DEO could reduce the hippocampal inflammatory cytokine content and increase the density of dendritic spine. In conclusion, the present work indicated that DEO exhibited antidepressant effect on CUMS-induced depressive mice, which was possible due to the TLR4/NF-κB/NLRP3 pathway and the amelioration of dendritic spine density through GluR/PSD95 cascade.
Collapse
Affiliation(s)
- Xinfei Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Zhu
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Ayabe T, Fukuda T, Ano Y. Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation. Biomolecules 2020; 10:E131. [PMID: 31940997 PMCID: PMC7022854 DOI: 10.3390/biom10010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Dementia and cognitive decline are global public health problems. Moderate consumption of alcoholic beverages reduces the risk of dementia and cognitive decline. For instance, resveratrol, a polyphenolic compound found in red wine, has been well studied and reported to prevent dementia and cognitive decline. However, the effects of specific beer constituents on cognitive function have not been investigated in as much detail. In the present review, we discuss the latest reports on the effects and underlying mechanisms of hop-derived bitter acids found in beer. Iso-α-acids (IAAs), the main bitter components of beer, enhance hippocampus-dependent memory and prefrontal cortex-associated cognitive function via dopamine neurotransmission activation. Matured hop bitter acids (MHBAs), oxidized components with β-carbonyl moieties derived from aged hops, also enhance memory functions via norepinephrine neurotransmission-mediated mechanisms. Furthermore, the effects of both IAAs and MHBAs are attenuated by vagotomy, suggesting that these bitter acids enhance cognitive function via vagus nerve stimulation. Moreover, supplementation with IAAs attenuates neuroinflammation and cognitive impairments in various rodent models of neurodegeneration including Alzheimer's disease. Daily supplementation with hop-derived bitter acids (e.g., 35 mg/day of MHBAs) may be a safe and effective strategy to stimulate the vagus nerve and thus enhance cognitive function.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan; (T.F.); (Y.A.)
| | | | | |
Collapse
|
13
|
Fukuda T, Obara K, Saito J, Umeda S, Ano Y. Effects of Hop Bitter Acids, Bitter Components in Beer, on Cognition in Healthy Adults: A Randomized Controlled Trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:206-212. [PMID: 31808686 DOI: 10.1021/acs.jafc.9b06660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study aimed to investigate the effects of matured hop bitter acids (MHBAs) on human cognition, mental fatigue, and mood state. In this randomized double-blind placebo-controlled study, 60 healthy adults (age 45-64 years) with self-awareness of cognitive decline were randomly divided into 2 groups and received either orally administered MHBAs (35 mg/day) or placebo for 12 weeks. Cognitive functions and mental states were assessed using neuropsychological tests or questionnaires at baseline and weeks 6 and 12 of the intervention. The change in verbal fluency score at week 6 compared with that at baseline was significantly higher in the MHBAs-treated group compared with that in the placebo group (P = 0.034), and Stroop test score at week 12 was significantly lower in the MHBAs-treated group compared with the placebo group (P = 0.019). Furthermore, subjective fatigue and anxiety at week 12 were significantly improved in the MHBAs-treated group (P = 0.008 and 0.043, respectively) compared with the placebo group. This is the first study to evaluate the effects of bitter ingredients in beer on cognition, subjective mood, and mental fatigue in a clinical trial. Our findings suggest that hop-derived bitter acids might be beneficial for cognition and mood state.
Collapse
Affiliation(s)
- Takafumi Fukuda
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Company, Ltd. , Fukuura , Kanazawa-ku, Yokohama 236-0004 , Japan
| | - Kuniaki Obara
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Company, Ltd. , Fukuura , Kanazawa-ku, Yokohama 236-0004 , Japan
| | - Jiro Saito
- Medical Station Clinics , Takaban , Meguro-ku, Tokyo 152-0004 , Japan
| | - Satoshi Umeda
- Department of Psychology , Keio University , Mita , Minato-ku, Tokyo 108-8345 , Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Company, Ltd. , Fukuura , Kanazawa-ku, Yokohama 236-0004 , Japan
| |
Collapse
|
14
|
Ano Y, Ohya R, Kondo K. Antidepressant-Like Effect of β-Lactolin, a Glycine-Threonine-Tryptophan-Tyrosine Peptide. J Nutr Sci Vitaminol (Tokyo) 2019; 65:430-434. [PMID: 31666480 DOI: 10.3177/jnsv.65.430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The number of patients with mental illnesses, including depression, is rapidly increasing, and daily lifestyle is closely associated with the development of symptoms. Consequently, corrective measures, such as diet-based treatment for diseases, are receiving great attention. We previously showed that β-lactolin, a β-lactopeptide of glycine-threonine-tryptophan-tyrosine peptide, inhibits monoamine oxidase and improves memory impairment in mice, but the effects on depression have not been investigated. Here we showed that β-lactolin improved depression-like behavior via dopamine-D1-like receptor. Orally administered β-lactolin reduced immobility time in tail suspension test (TST). Pretreatment with SCH23390, dopamine D1-like receptor antagonist, attenuated the reduction in TST by β-lactolin. These effects were observed by the treatment with whey digest rich in β-lactolin. In addition, β-lactolin increased the levels of dopamine in the frontal cortex associated with the depression-like behavior. The present study suggests that supplements or nutraceutical compounds in whey digests (such as β-lactolin) show antidepressant-like effect.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd
| | - Keiji Kondo
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd
| |
Collapse
|
15
|
Kita M, Yoshida S, Kondo K, Yamakawa Y, Ano Y. Effects of iso-α-acids, the hop-derived bitter components in beer, on the MRI-based Brain Healthcare Quotient in healthy middle-aged to older adults. Neuropsychopharmacol Rep 2019; 39:273-278. [PMID: 31587526 PMCID: PMC7292307 DOI: 10.1002/npr2.12077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Aim Neurological disorders are a major public health issue worldwide and are often associated with structural changes in the brain. We have previously demonstrated that iso‐α‐acids (IAAs), the hop‐derived bitter components in beer, improve memory impairment in aged and Alzheimer's disease mouse models. In this study, we evaluated the effects of IAA intake on the brain structure in healthy middle‐aged to older adults. This study was conducted under the Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT) study launched by the Cabinet office of Japan. Method This study employed an open‐labeled, single‐arm, before and after design. Healthy middle‐aged to older adults consumed a beverage containing IAAs (3 mg/190 mL) for 4 weeks.Recently developed magnetic resonance imaging‐based brain health indicators were used to evaluate the following brain conditions: the Brain Healthcare Quotient (BHQ) based on gray matter volume (GM‐BHQ) and white matter fractional anisotropy (FA‐BHQ). Results In total, 25 subjects were recruited, and GM‐BHQ and FA‐BHQ were measured before and after intervention. In all subjects, no significant differences in GM‐BHQ and FA‐BHQ were observed. In subjects aged ≥ 60 years (mean 54.5; standard deviation 3.9) (n = 8), GM‐BHQ was significantly increased 4 weeks after intervention compared with that before intervention. Conclusion Intake of beverages containing IAAs might affect brain aging, particularly in healthy older adults, which may prevent the development of neurological disorders. Future studies employing more robust designs can elucidate the effects of IAAs on GM‐BHQ and cognitive functions. This is the first clinical trial evaluating the effects of intake of bitter component of beer, iso‐alpha‐acid, on brain structure. The brain structure before and after intervention was measured by recently developed magnetic resonance imaging‐based method. The gray matter volume of older adults was improved by the intake of iso‐alpha‐acid.![]()
Collapse
Affiliation(s)
- Masahiro Kita
- Research Laboratories for Health Science & Food Technologies, Kirin Company Limited, Yokohama, Japan
| | - Satoshi Yoshida
- Research Laboratories for Health Science & Food Technologies, Kirin Company Limited, Yokohama, Japan
| | - Keiji Kondo
- Research Laboratories for Health Science & Food Technologies, Kirin Company Limited, Yokohama, Japan
| | - Yoshinori Yamakawa
- ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Tokyo, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Limited, Yokohama, Japan
| |
Collapse
|