1
|
Jiang X, Sun M, Yan Y, Wang Y, Fan X, Wei J, Wang K, Liang P, Wang Z, Wang J, Wang X, Jia J. Corticostriatal glutamate-mediated dynamic therapeutic efficacy of electroacupuncture in a parkinsonian rat model. Clin Transl Med 2024; 14:e70117. [PMID: 39627032 PMCID: PMC11614550 DOI: 10.1002/ctm2.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Motor impairments are the defining cardinal features of Parkinson's disease (PD), resulting from malfunction of the cortico-basal ganglia circuit. Clinical data have demonstrated that electroacupuncture (EA) stimulation may benefit motor symptoms in PD without adverse effects. However, the specific effects of EA on PD and the underlying mechanisms remain largely unclear. METHODS This study investigated the effects of EA stimulation during and after 100 Hz application in a rat model of PD created by unilateral injection of 6-hydroxydopamine (6-OHDA). To establish optimal treatment parameters of EA, motor behaviours were dynamically assessed using open field and rotarod tests. Additionally, we evaluated corticostriatal spine plasticity using immunoelectron microscopy and measured the levels of dopaminergic and glutamatergic neurotransmitters through microdialysis, in vivo electrochemistry and high-performance liquid chromatography. Neural activity dynamics were recorded by measuring local field potentials in both the motor cortex and the striatum. Furthermore, chemogenetic techniques were employed to manipulate corticostriatal glutamatergic neurons and clarify the mechanisms that contribute to the therapeutic benefits of EA in the PD rat model. RESULTS Chronic EA stimulation resulted in a gradual and long-lasting alleviation of motor symptoms, independent of nigrostriatal dopamine (DA) restoration. Notably, EA stimulation modulated corticostriatal spine plasticity and reduced excessive glutamate transmission in PD model rats. Moreover, EA effectively inhibited aberrant corticostriatal synchronised high-beta (25-40 Hz) oscillations, which serves as a pathological biomarker of PD. Conversely, chronic chemogenetic activation of corticostriatal glutamatergic neurons hindered these positive outcomes of EA treatment in PD model rats. CONCLUSIONS This study sheds light on the temporal dynamics and optimal parameters of EA treatment in PD. It emphasises the significance of inhibiting corticostriatal glutamate transmission in EA's therapeutic benefits for PD. Targeting glutamatergic neurons with EA holds promise as a non-dopaminergic intervention for managing motor symptoms and abnormal neural activity with PD. KEY POINTS EA commonly protects dopaminergic neuronsby reducing neuroinflammation, oxidative stress, and apoptosis. New findings reveal that EA alleviates motor symptoms in a parkinsonian rat model without restoring striatal dopamine levels. EA effectively suppresses excessiveglutamate transmission and high-beta synchronization, contributing to motorsymptom relief. Activation of corticostriatalglutamatergic projections may hinder the efficacy of EA.
Collapse
Affiliation(s)
- Xinxin Jiang
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Min Sun
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
- Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yitong Yan
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Yanhua Wang
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Xinyu Fan
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jing Wei
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Ke Wang
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Peirong Liang
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Zirui Wang
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jihan Wang
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Xiaomin Wang
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jun Jia
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Guo L, Hu H, Jiang N, Yang H, Sun X, Xia H, Ma J, Liu H. Electroacupuncture blocked motor dysfunction and gut barrier damage by modulating intestinal NLRP3 inflammasome in MPTP-induced Parkinson's disease mice. Heliyon 2024; 10:e30819. [PMID: 38774094 PMCID: PMC11107113 DOI: 10.1016/j.heliyon.2024.e30819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder commonly accompanied by gut dysfunction. EA has shown anti-inflammatory and neuroprotective effects. Here, we aim to explore whether EA can treat Parkinson's disease by restoring the intestinal barrier and modulating NLRP3 inflammasome. We applied 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish a PD mouse model and EA at the GV16, LR3, and ST36 for 12 consecutive days. The open-field test results indicated that EA alleviated depression and behavioral defects, upregulated the expressions of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF), and blocked the accumulation of α-synuclein (α-syn) in the midbrain. Moreover, EA blocked the damage to intestinal tissues of PD mice, indicative of suppressed NLRP3 inflammasome activation and increased gut barrier integrity. Notably, the antibiotic-treated mouse experiment validated that the gut microbiota was critical in alleviating PD dyskinesia and intestinal inflammation by EA. In conclusion, this study suggested that EA exhibited a protective effect against MPTP-induced PD by alleviating behavioral defects, reversing the block of motor dysfunction, and improving the gut barrier by modulating intestinal NLRP3 inflammasome. Above all, this study could provide novel insights into the pathogenesis and therapy of PD.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| | - Xiongjie Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| |
Collapse
|
3
|
Geng X, Zou Y, Huang T, Li S, Pang A, Yu H. Electroacupuncture Improves Neuronal Damage and Mitochondrial Dysfunction Through the TRPC1 and SIRT1/AMPK Signaling Pathways to Alleviate Parkinson's Disease in Mice. J Mol Neurosci 2024; 74:5. [PMID: 38189854 DOI: 10.1007/s12031-023-02186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that mainly manifests as cognitive decline and motor dysfunction, the treatment of which is still a major challenge in the clinical field. Acupuncture therapy has been shown in many studies to enhance the body's own immunity and disease resistance. This study mainly discusses the specific mechanism underlying electroacupuncture intervention in improving PD. Male C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a mouse PD model, and the chorea trembling control area of the head of PD mice was treated by electroacupuncture. Western blotting was used to detect the expression of related proteins in mouse pathological samples; TUNEL measured neuronal apoptosis levels; Nissl staining observed neuronal damage; immunofluorescence and immunohistochemistry were used to detect the expression of Iba-1, TH, and α-syn in substantia nigra denser (SN). The expression levels of oxidative stress factors and inflammatory factors were measured by kits. Flow cytometry measured mitochondrial membrane potential and Ca2+ levels. MPTP intraperitoneal injection induced an increase in inflammatory factors in PD mice and promoted the oxidative stress response, and the inflammatory response was alleviated after electroacupuncture treatment. Electroacupuncture intervention effectively alters the decrease in oxidative stress levels and alleviates neuronal damage in PD mice. Electroacupuncture improves mitochondrial dysfunction induced by MPTP in PD mice by activating the SIRT1/AMPK signaling pathway. We also confirmed that knocking down TRPC1 can inhibit the SIRT1/AMPK signaling pathway, weaken the Ca2+ content in mouse neuronal tissue, and promote cell apoptosis. Electroacupuncture improves neuronal damage and alleviates PD in mice through the TRPC1 and SIRT1/AMPK signaling pathways. In addition, electroacupuncture therapy can improve MPTP-induced mitochondrial dysfunction in PD mice and alleviate the PD process.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Tao Huang
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Ailan Pang
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China.
| |
Collapse
|
4
|
Miao C, Li X, Zhang Y. Effect of acupuncture on BDNF signaling pathways in several nervous system diseases. Front Neurol 2023; 14:1248348. [PMID: 37780709 PMCID: PMC10536971 DOI: 10.3389/fneur.2023.1248348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, the understanding of the mechanisms of acupuncture in the treatment of neurological disorders has deepened, and considerable progress has been made in basic and clinical research on acupuncture, but the relationship between acupuncture treatment mechanisms and brain-derived neurotrophic factor (BDNF) has not yet been elucidated. A wealth of evidence has shown that acupuncture exhibits a dual regulatory function of activating or inhibiting different BDNF pathways. This review focuses on recent research advances on the effect of acupuncture on BDNF and downstream signaling pathways in several neurological disorders. Firstly, the signaling pathways of BDNF and its function in regulating plasticity are outlined. Furthermore, this review discusses explicitly the regulation of BDNF by acupuncture in several nervous system diseases, including neuropathic pain, Parkinson's disease, cerebral ischemia, depression, spinal cord injury, and other diseases. The underlying mechanisms of BDNF regulation by acupuncture are also discussed. This review aims to improve the theoretical system of the mechanism of acupuncture action through further elucidation of the mechanism of acupuncture modulation of BDNF in the treatment of neurological diseases and to provide evidence to support the wide application of acupuncture in clinical practice.
Collapse
Affiliation(s)
- Chenxin Miao
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoning Li
- Department of Acupuncture, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yishu Zhang
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Savall ASP, Fidelis EM, de Mello JD, Quines CB, Denardin CC, Marques LS, Klann IP, Nogueira CW, Sampaio TB, Pinton S. Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: The involvement of pro-BDNF/p75 NTR pathway. Life Sci 2023; 324:121711. [PMID: 37088413 DOI: 10.1016/j.lfs.2023.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.
Collapse
Affiliation(s)
| | | | | | | | | | - Luiza Souza Marques
- Federal University of Santa Maria - Campus Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | | | | | | | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana CEP 97500-970, RS, Brazil.
| |
Collapse
|
6
|
Li SS, Xing XX, Hua XY, Zhang YW, Wu JJ, Shan CL, Zheng MX, Wang H, Xu JG. Alteration of brain functional networks induced by electroacupuncture stimulation in rats with ischemia–reperfusion: An independent component analysis. Front Neurosci 2022; 16:958804. [PMID: 35992929 PMCID: PMC9382119 DOI: 10.3389/fnins.2022.958804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Motor dysfunction is the major sequela of ischemic stroke. Motor recovery after stroke has been shown to be associated with remodeling of large-scale brain networks, both functionally and structurally. Electroacupuncture (EA) is a traditional Chinese medicine application that has frequently been recommended as an alternative therapy for ischemic stroke and is reportedly effective for alleviating motor symptoms in patients. In the present study, the effect of EA on the alterations of functional resting state networks (RSNs) was explored after middle cerebral artery occlusion/reperfusion (MCAO/R) injury using resting-state functional MRI. Rats were randomly assigned to three groups, including the sham group, MCAO/R group and MCAO/R+EA group. The ladder rung walking test was conducted prior to and after modeling to assess behavioral changes. RSNs were identified based on the independent component analysis (ICA) performed on the fMRI data from groups. EA treatment effectively reduced the occurrence of contralateral forelimb foot faults. Furthermore, our results suggested the disrupted function of the whole-brain network following ischemic stroke and the modulatory effect of acupuncture. The sensorimotor network (SMN), interoceptive network (IN), default mode network (DMN) and salience network (SN) were related to the therapeutic effect of EA on stroke recovery. Collectively, our findings confirmed the effect of EA on motor function recovery after cerebral ischemia reperfusion and shed light on the assessment of EA intervention-induced effects on brain networks. This study provides neuroimaging evidence to explain the therapeutic effects of EA in ischemic stroke and will lay the groundwork for further studies.
Collapse
Affiliation(s)
- Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Wen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Mou-Xiong Zheng,
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- He Wang,
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
7
|
Oh JY, Lee YS, Hwang TY, Cho SJ, Jang JH, Ryu Y, Park HJ. Acupuncture Regulates Symptoms of Parkinson’s Disease via Brain Neural Activity and Functional Connectivity in Mice. Front Aging Neurosci 2022; 14:885396. [PMID: 35774113 PMCID: PMC9237259 DOI: 10.3389/fnagi.2022.885396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a multilayered progressive brain disease characterized by motor dysfunction and a variety of other symptoms. Although acupuncture has been used to ameliorate various symptoms of neurodegenerative disorders, including PD, the underlying mechanisms are unclear. Here, we investigated the mechanism of acupuncture by revealing the effects of acupuncture treatment on brain neural responses and its functional connectivity in an animal model of PD. We observed that destruction of neuronal network between many brain regions in PD mice were reversed by acupuncture. Using machine learning analysis, we found that the key region associated with the improvement of abnormal behaviors might be related to the neural activity of M1, suggesting that the changes of c-Fos in M1 could predict the improvement of motor function induced by acupuncture treatment. In addition, acupuncture treatment was shown to significantly normalize the brain neural activity not only in M1 but also in other brain regions related to motor behavior (striatum, substantia nigra pars compacta, and globus pallidus) and non-motor symptoms (hippocampus, lateral hypothalamus, and solitary tract) of PD. Taken together, our results demonstrate that acupuncture treatment might improve the PD symptoms by normalizing the brain functional connectivity in PD mice model and provide new insights that enhance our current understanding of acupuncture mechanisms for non-motor symptoms.
Collapse
Affiliation(s)
- Ju-Young Oh
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Ye-Seul Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, South Korea
| | - Tae-Yeon Hwang
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Seong-Jin Cho
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea
| | - Jae-Hwan Jang
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Yeonhee Ryu
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea
| | - Hi-Joon Park
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
- *Correspondence: Hi-Joon Park
| |
Collapse
|
8
|
Wang Q, Qin F, Wang H, Yang H, Liu Q, Li Z, Jiang Y, Lu S, Wang Q, Lu Z. Effect of Electro-Acupuncture at ST36 and SP6 on the cAMP -CREB Pathway and mRNA Expression Profile in the Brainstem of Morphine Tolerant Mice. Front Neurosci 2021; 15:698967. [PMID: 34512242 PMCID: PMC8431970 DOI: 10.3389/fnins.2021.698967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Undoubtedly, opioid drugs have been the most popular treatment for refractory pain since found, such as morphine. However, tolerance to the analgesic effects caused by repeated use is inevitable, which greatly limits the clinical application of these drugs. Nowadays, it has become the focus of the world that further development of non-opioid-based treatment along with efficient strategies to circumvent opioid tolerance are urgently needed clinically. Fortunately, electro-acupuncture (EA) provides an alternative to pharmaceutic treatment, remaining its potential mechanisms unclear although. This study was aimed to observe the effects of EA on morphine-induced tolerance in mice and discover its underlying mechanism. Tail-flick assay and hot-plate test were conducted to assess the development of tolerance to morphine-induced analgesia effect. As a result of repeated administration scheme (10 mg/kg, twice per day, for 7 days), approximately a two-fold increase was observed in the effective dose of 50% (ED50) of morphine-induced antinociceptive effect. Interestingly, by EA treatment (2/100Hz, 0.5, 1.0, and 1.5 mA, 30 min/day for 7 days) at the acupoints Zusanli (ST36) and Sanyinjiao (SP6), morphine ED50 curves was remarkably leftward shifted on day 8. In addition, the RNA sequencing strategy was used to reveal the potential mechanisms. Due to the well described relevance of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), extracellular regulated protein kinases (ERK), and cAMP response element-binding (CREB) in brainstem (BS) to analgesia tolerance, the cAMP-PKA/ERK-CREB signaling was deeply concerned in this study. Based upon Enzyme-Linked Immunosorbent Assay, the up-regulation of the cAMP level was observed, whereas reversed with EA treatment. Similarly, western blot revealed the phosphorylation levels of PKA, ERK, and CREB were up-regulated in morphine tolerant mice, whereas the EA group showed a significantly reduced expression level instead. This study observed an attenuating effect of the EA at ST36 and SP6 on morphine tolerance in mice, and suggested several potential biological targets by RNA-seq, which include the cAMP-PKA/ERK-CREB signaling pathway, strongly supporting a useful treatment for combatting the opioid epidemic, and opioid-tolerant patients.
Collapse
Affiliation(s)
- Qisheng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fenfen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanya Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingyang Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghao Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Wang
- College of International Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhigang Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Acupuncture for Parkinson's Disease: Efficacy Evaluation and Mechanisms in the Dopaminergic Neural Circuit. Neural Plast 2021; 2021:9926445. [PMID: 34221005 PMCID: PMC8221898 DOI: 10.1155/2021/9926445] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease caused by degeneration of dopaminergic neurons in the substantia nigra. Existing pharmaceutical treatments offer alleviation of symptoms but cannot delay disease progression and are often associated with significant side effects. Clinical studies have demonstrated that acupuncture may be beneficial for PD treatment, particularly in terms of ameliorating PD symptoms when combined with anti-PD medication, reducing the required dose of medication and associated side effects. During early stages of PD, acupuncture may even be used to replace medication. It has also been found that acupuncture can protect dopaminergic neurons from degeneration via antioxidative stress, anti-inflammatory, and antiapoptotic pathways as well as modulating the neurotransmitter balance in the basal ganglia circuit. Here, we review current studies and reflect on the potential of acupuncture as a novel and effective treatment strategy for PD. We found that particularly during the early stages, acupuncture may reduce neurodegeneration of dopaminergic neurons and regulate the balance of the dopaminergic circuit, thus delaying the progression of the disease. The benefits of acupuncture will need to be further verified through basic and clinical studies.
Collapse
|
10
|
Effects of Acupuncture on Oxidative Stress Amelioration via Nrf2/ARE-Related Pathways in Alzheimer and Parkinson Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6624976. [PMID: 33995547 PMCID: PMC8096560 DOI: 10.1155/2021/6624976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress is responsible for the pathogeneses of various diseases. Mitochondrial dysfunction, impaired DNA repair, and cellular damage followed by oxidative stress contribute to neurodegenerative diseases, such as Alzheimer disease (AD) and Parkinson disease (PD). Acupuncture is a traditional therapy that has been practiced for >3000 years in Asia. Many studies have demonstrated that acupuncture has notable antioxidative, anti-inflammatory, and antiapoptotic effects. However, the exact mechanism remains unclear. Nuclear factor erythroid 2-related factor (Nrf2) is crucial in regulating the redox equilibrium. Activated Nfr2 translocates into the nucleus, binds to the antioxidant response element (ARE), and initiates antioxidative enzyme transcription. In this review, we demonstrated the effects of acupuncture on oxidative stress amelioration in AD and PD animal models through Nrf2/ARE pathway activation and Nrf2/ARE-related pathway regulation. Thus, acupuncture could be a therapeutic option for AD and PD.
Collapse
|
11
|
Li N, Cao S, Yu Z, Qiao M, Cheng Y, Shen Y, Song L, Huang X, Yang G, Zhao Y. Perinatal Lead Exposure Alters Calsyntenin-2 and Calsyntenin-3 Expression in the Hippocampus and Causes Learning Deficits in Mice Post-weaning. Biol Trace Elem Res 2021; 199:1414-1424. [PMID: 32557100 DOI: 10.1007/s12011-020-02241-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022]
Abstract
Calsyntenin-2 (Clstn2) and calsyntenin-3 (Clstn3) are the members of the cadherin superfamily and function to regulate the postsynaptic activity. Both proteins are known to play an important role in memory and learning. This study was designed to test the hypothesis that exposure of mothers to Pb in drinking water may alter the expression of Clstn2 and Clstn3 in offspring, which contributes to the Pb-induced learning deficiency. Pregnant mice were exposed to Pb in drinking water as Pb acetate from gestation to weaning. At the postnatal day 21, the learning and memory ability of pups was tested by Morris water maze, and the blood and brain tissues from pups were collected for metal and protein analyses. Data showed that perinatal Pb exposure resulted in a dose-dependent increase of Pb concentrations in blood (6-20-fold), hippocampus (2-7-fold), and cerebral cortex (2-8-fold) in offspring, as compared to controls (p < 0.05).The ability of learning and memory was decreased in lead exposure group, as compared to controls (p < 0.05). Both immunofluorescence and Western blot analyses revealed a striking difference in the expression of Clstn2 vs. Clstn3 following perinatal Pb exposure. In pregnant mice exposed to 0.1%, 0.2%, and 0.5% Pb, the expression of Clstn2 in offspring showed a Pb dose-related decrease by 39.2%, 76.5%, and 96.1% in hippocampus and by12.5%, 59.4%, and 78.1% in cerebral cortex, respectively (p < 0.05). In contrast, Clstn3 expression in these offspring brain regions was significantly increased (p < 0.05), after perinatal Pb exposure. The nature of Pb differential effect on Clstn2 and Clstn3 remains unknown. These observations suggest that Clstn2 and Clstn3 may have different roles in synaptic development and differentiation. Pb-induced learning defects may partly relate to the altered expression of calsyntenin proteins.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science and Technology, Henan Agriculture University, AgricultureRoad 63, Zhengzhou, 450002, Henan, China.
| | - Shuai Cao
- College of Food Science and Technology, Henan Agriculture University, AgricultureRoad 63, Zhengzhou, 450002, Henan, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agriculture University, AgricultureRoad 63, Zhengzhou, 450002, Henan, China
| | - Yongxia Cheng
- College of Food Science and Technology, Henan Agriculture University, AgricultureRoad 63, Zhengzhou, 450002, Henan, China
| | - Yue Shen
- College of Food Science and Technology, Henan Agriculture University, AgricultureRoad 63, Zhengzhou, 450002, Henan, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agriculture University, AgricultureRoad 63, Zhengzhou, 450002, Henan, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agriculture University, AgricultureRoad 63, Zhengzhou, 450002, Henan, China
| | - Guojun Yang
- Department of Preventive Medicine, Henan Medical College, Henan, 451191, China
| | - Yali Zhao
- College of Food Science and Technology, Henan Agriculture University, AgricultureRoad 63, Zhengzhou, 450002, Henan, China
| |
Collapse
|
12
|
Yu CC, Du YJ, Wang SQ, Liu LB, Shen F, Wang L, Lin YF, Kong LH. Experimental Evidence of the Benefits of Acupuncture for Alzheimer's Disease: An Updated Review. Front Neurosci 2021; 14:549772. [PMID: 33408601 PMCID: PMC7779610 DOI: 10.3389/fnins.2020.549772] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As the global population ages, the prevalence of Alzheimer's disease (AD), the most common form of dementia, is also increasing. At present, there are no widely recognized drugs able to ameliorate the cognitive dysfunction caused by AD. The failure of several promising clinical trials in recent years has highlighted the urgent need for novel strategies to both prevent and treat AD. Notably, a growing body of literature supports the efficacy of acupuncture for AD. In this review, we summarize the previously reported mechanisms of acupuncture's beneficial effects in AD, including the ability of acupuncture to modulate Aβ metabolism, tau phosphorylation, neurotransmitters, neurogenesis, synapse and neuron function, autophagy, neuronal apoptosis, neuroinflammation, cerebral glucose metabolism, and brain responses. Taken together, these findings suggest that acupuncture provides therapeutic effects for AD.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Shu-Qin Wang
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Le-Bin Liu
- Department of Rehabilitation Medicine, Hubei Rongjun Hospital, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan-Fang Lin
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Ibrakaw AS, Omoruyi SI, Ekpo OE, Hussein AA. Neuroprotective Activities of Boophone haemanthoides (Amaryllidaceae) Extract and Its Chemical Constituents. Molecules 2020; 25:molecules25225376. [PMID: 33212961 PMCID: PMC7698425 DOI: 10.3390/molecules25225376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition that progresses as age increases, and some of its major symptoms include tremor and postural and movement-related difficulties. To date, the treatment of PD remains a challenge because available drugs only treat the symptoms of the disease or possess serious side effects. In light of this, new treatment options are needed; hence, this study investigates the neuroprotective effects of an organic Boophone haemanthoides extract (BHE) and its bioactive compounds using an in vitro model of PD involving the toxin 1-methyl-4-phenylpyridinium (MPP+) and SH-SY5Y neuroblastoma cells. A total of seven compounds were isolated from BHE, viz distichamine (1), 1α,3α-diacetylnerbowdine (2), hippadine (3), stigmast-4-ene-3,6-dione (4), cholest-4-en-3-one (5), tyrosol (6), and 3-hydroxy-1-(4′-hydroxyphenyl)-1-propanone (7). Six compounds (1, 2, 4, 5, 6 and 7) were investigated, and five showed neuroprotection alongside the BHE. This study gives insight into the bioactivity of the non-alkaloidal constituents of Amaryllidaceae, since the isolated compounds and the BHE showed improved cell viability, increased ATP generation in the cells as well as inhibition of MPP+-induced apoptosis. Together, these findings support the claim that the Amaryllidaceae plant family could be a potential reserve of bioactive compounds for the discovery of neuroprotective agents.
Collapse
Affiliation(s)
- Abobaker S. Ibrakaw
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town, Robert Sobukwe Road, Bellville 7535, South Africa;
| | - Sylvester I. Omoruyi
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
| | - Okobi E. Ekpo
- Department of Medical Biosciences, University of the Western Cape, Cape Town, Robert Sobukwe Road, Bellville 7535, South Africa;
| | - Ahmed A. Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
- Correspondence: ; Tel.: +27-21-959-6193; Fax: +27-21-959-3055
| |
Collapse
|
14
|
Botanical Drug Puerarin Promotes Neuronal Survival and Neurite Outgrowth against MPTP/MPP +-Induced Toxicity via Progesterone Receptor Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7635291. [PMID: 33123315 PMCID: PMC7586160 DOI: 10.1155/2020/7635291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
Background Progesterone receptor (PR) modulates neuroprotective and regenerative responses in Parkinson's disease and related neurological diseases. Objectives The present study was designed to determine whether botanical drug puerarin could exhibit neuroprotective and neurorestorative activities via PR signaling. Methods The neuroprotective and neurotrophic activities of puerarin were investigated in MPTP-lesioned mice and MPP+-challenged primary rat midbrain neurons. Rotarod performance test and tail suspension test were used to assess motor functions. Tyrosine hydroxylase (TH) and PR were determined by immunostaining, Western blotting, and luciferase reporter assays. Neurite outgrowth was assessed by fluorescence staining and immunostaining. Results Puerarin effectively ameliorated the MPTP-induced motor abnormalities in MPTP-lesioned mice and protected primary rat midbrain neurons against MPP+-induced toxicity via PR signaling although progesterone exhibited the neuroprotection. PR antagonist mifepristone (RU486) diminished the neuroprotection of puerarin in MPTP-lesioned mice and MPP+-induced primary rat midbrain neurons. Moreover, puerarin promoted the differentiation of primary rat midbrain neurons and potentiated NGF to induce neuritogenesis in PC12 cells. RU486 and PR-siRNA could inhibit the effect of puerarin. Puerarin and progesterone could enhance the PR promoter. Conclusion Puerarin attenuated MPTP- and MPP+-induced toxicity and potentiated neurite outgrowth via PR. These results suggested that puerarin may become an alternative hormone for suppressing MPTP- and MPP+-induced toxicity in neurodegenerative diseases.
Collapse
|
15
|
Regulation of BDNF-TrkB Signaling and Potential Therapeutic Strategies for Parkinson's Disease. J Clin Med 2020; 9:jcm9010257. [PMID: 31963575 PMCID: PMC7019526 DOI: 10.3390/jcm9010257] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase receptor type B (TrkB) are widely distributed in multiple regions of the human brain. Specifically, BDNF/TrkB is highly expressed and activated in the dopaminergic neurons of the substantia nigra and plays a critical role in neurophysiological processes, including neuro-protection and maturation and maintenance of neurons. The activation as well as dysfunction of the BDNF-TrkB pathway are associated with neurodegenerative diseases. The expression of BDNF/TrkB in the substantia nigra is significantly reduced in Parkinson's Disease (PD) patients. This review summarizes recent progress in the understanding of the cellular and molecular roles of BNDF/TrkB signaling and its isoform, TrkB.T1, in Parkinson's disease. We have also discussed the effects of current therapies on BDNF/TrkB signaling in Parkinson's disease patients and the mechanisms underlying the mutation-mediated acquisition of resistance to therapies for Parkinson's disease.
Collapse
|