1
|
Adebisi AT, Veluvolu KC. Brain network analysis for the discrimination of dementia disorders using electrophysiology signals: A systematic review. Front Aging Neurosci 2023; 15:1039496. [PMID: 36936496 PMCID: PMC10020520 DOI: 10.3389/fnagi.2023.1039496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Background Dementia-related disorders have been an age-long challenge to the research and healthcare communities as their various forms are expressed with similar clinical symptoms. These disorders are usually irreversible at their late onset, hence their lack of validated and approved cure. Since their prodromal stages usually lurk for a long period of time before the expression of noticeable clinical symptoms, a secondary prevention which has to do with treating the early onsets has been suggested as the possible solution. Connectivity analysis of electrophysiology signals has played significant roles in the diagnosis of various dementia disorders through early onset identification. Objective With the various applications of electrophysiology signals, the purpose of this study is to systematically review the step-by-step procedures of connectivity analysis frameworks for dementia disorders. This study aims at identifying the methodological issues involved in such frameworks and also suggests approaches to solve such issues. Methods In this study, ProQuest, PubMed, IEEE Xplore, Springer Link, and Science Direct databases are employed for exploring the evolution and advancement of connectivity analysis of electrophysiology signals of dementia-related disorders between January 2016 to December 2022. The quality of assessment of the studied articles was done using Cochrane guidelines for the systematic review of diagnostic test accuracy. Results Out of a total of 4,638 articles found to have been published on the review scope between January 2016 to December 2022, a total of 51 peer-review articles were identified to completely satisfy the review criteria. An increasing trend of research in this domain is identified within the considered time frame. The ratio of MEG and EEG utilization found within the reviewed articles is 1:8. Most of the reviewed articles employed graph theory metrics for their analysis with clustering coefficient (CC), global efficiency (GE), and characteristic path length (CPL) appearing more frequently compared to other metrics. Significance This study provides general insight into how to employ connectivity measures for the analysis of electrophysiology signals of dementia-related disorders in order to better understand their underlying mechanism and their differential diagnosis.
Collapse
Affiliation(s)
- Abdulyekeen T. Adebisi
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Kalyana C. Veluvolu
- School of Electronics Engineering, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Uncovering hidden resting state dynamics: A new perspective on auditory verbal hallucinations. Neuroimage 2022; 255:119188. [PMID: 35398281 DOI: 10.1016/j.neuroimage.2022.119188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/24/2022] Open
Abstract
In the absence of sensory stimulation, the brain transits between distinct functional networks. Network dynamics such as transition patterns and the time the brain stays in each network link to cognition and behavior and are subject to much investigation. Auditory verbal hallucinations (AVH), the temporally fluctuating unprovoked experience of hearing voices, are associated with aberrant resting state network activity. However, we lack a clear understanding of how different networks contribute to aberrant activity over time. An accurate characterization of latent network dynamics and their relation to neurocognitive changes necessitates methods that capture the sub-second temporal fluctuations of the networks' functional connectivity signatures. Here, we critically evaluate the assumptions and sensitivity of several approaches commonly used to assess temporal dynamics of brain connectivity states in M/EEG and fMRI research, highlighting methodological constraints and their clinical relevance to AVH. Identifying altered brain connectivity states linked to AVH can facilitate the detection of predictive disease markers and ultimately be valuable for generating individual risk profiles, differential diagnosis, targeted intervention, and treatment strategies.
Collapse
|
3
|
Marimpis AD, Dimitriadis SI, Goebel R. Dyconnmap: Dynamic connectome mapping-A neuroimaging python module. Hum Brain Mapp 2021; 42:4909-4939. [PMID: 34250674 PMCID: PMC8449119 DOI: 10.1002/hbm.25589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (https://github.com/makism/dyconnmap) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.
Collapse
Affiliation(s)
- Avraam D Marimpis
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Neuroinformatics Group, Cardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.,Brain Innovation B.V, Maastricht, The Netherlands
| | - Stavros I Dimitriadis
- Neuroinformatics Group, Cardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.,School of Psychology, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rainer Goebel
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Brain Innovation B.V, Maastricht, The Netherlands
| |
Collapse
|
4
|
Simos NJ, Dimitriadis SI, Kavroulakis E, Manikis GC, Bertsias G, Simos P, Maris TG, Papadaki E. Quantitative Identification of Functional Connectivity Disturbances in Neuropsychiatric Lupus Based on Resting-State fMRI: A Robust Machine Learning Approach. Brain Sci 2020; 10:brainsci10110777. [PMID: 33113768 PMCID: PMC7692139 DOI: 10.3390/brainsci10110777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is an autoimmune entity comprised of heterogenous syndromes affecting both the peripheral and central nervous system. Research on the pathophysiological substrate of NPSLE manifestations, including functional neuroimaging studies, is extremely limited. The present study examined person-specific patterns of whole-brain functional connectivity in NPSLE patients (n = 44) and age-matched healthy control participants (n = 39). Static functional connectivity graphs were calculated comprised of connection strengths between 90 brain regions. These connections were subsequently filtered through rigorous surrogate analysis, a technique borrowed from physics, novel to neuroimaging. Next, global as well as nodal network metrics were estimated for each individual functional brain network and were input to a robust machine learning algorithm consisting of a random forest feature selection and nested cross-validation strategy. The proposed pipeline is data-driven in its entirety, and several tests were performed in order to ensure model robustness. The best-fitting model utilizing nodal graph metrics for 11 brain regions was associated with 73.5% accuracy (74.5% sensitivity and 73% specificity) in discriminating NPSLE from healthy individuals with adequate statistical power. Closer inspection of graph metric values suggested an increased role within the functional brain network in NSPLE (indicated by higher nodal degree, local efficiency, betweenness centrality, or eigenvalue efficiency) as compared to healthy controls for seven brain regions and a reduced role for four areas. These findings corroborate earlier work regarding hemodynamic disturbances in these brain regions in NPSLE. The validity of the results is further supported by significant associations of certain selected graph metrics with accumulated organ damage incurred by lupus, with visuomotor performance and mental flexibility scores obtained independently from NPSLE patients.
Collapse
Affiliation(s)
- Nicholas John Simos
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
- Department of Electrical and Computer Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Stavros I. Dimitriadis
- Integrative Neuroimaging Lab, 55133 Thessaloniki, Greece;
- 1st Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences, Neuroscience and Mental Health Research Institute School of Medicine, & MRC Centre for Neuropsychiatric Genetics and Genomics, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
| | - Eleftherios Kavroulakis
- Department of Radiology, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece;
| | - Georgios C. Manikis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology and Allergy, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
- Department of Psychiatry, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece
- Correspondence: or
| | - Thomas G. Maris
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
- Department of Radiology, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece;
| | - Efrosini Papadaki
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
- Department of Radiology, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece;
| |
Collapse
|
5
|
Zhang L, Gan JQ, Zhu Y, Wang J, Wang H. EEG source-space synchrostate transitions and Markov modeling in the math-gifted brain during a long-chain reasoning task. Hum Brain Mapp 2020; 41:3620-3636. [PMID: 32469458 PMCID: PMC7416043 DOI: 10.1002/hbm.25035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 04/06/2020] [Accepted: 04/26/2020] [Indexed: 12/23/2022] Open
Abstract
To reveal transition dynamics of global neuronal networks of math-gifted adolescents in handling long-chain reasoning, this study explores momentary phase-synchronized patterns, that is, electroencephalogram (EEG) synchrostates, of intracerebral sources sustained in successive 50 ms time windows during a reasoning task and non-task idle process. Through agglomerative hierarchical clustering for functional connectivity graphs and nested iterative cosine similarity tests, this study identifies seven general and one reasoning-specific prototypical functional connectivity patterns from all synchrostates. Markov modeling is performed for the time-sequential synchrostates of each trial to characterize the interstate transitions. The analysis reveals that default mode network, central executive network (CEN), dorsal attention network, cingulo-opercular network, left/right ventral frontoparietal network, and ventral visual network aperiodically recur over non-task or reasoning process, exhibiting high predictability in interactively reachable transitions. Compared to non-gifted subjects, math-gifted adolescents show higher fractional occupancy and mean duration in CEN and reasoning-triggered transient right frontotemporal network (rFTN) in the time course of the reasoning process. Statistical modeling of Markov chains reveals that there are more self-loops in CEN and rFTN of the math-gifted brain, suggesting robust state durability in temporally maintaining the topological structures. Besides, math-gifted subjects show higher probabilities in switching from the other types of synchrostates to CEN and rFTN, which represents more adaptive reconfiguration of connectivity pattern in the large-scale cortical network for focused task-related information processing, which underlies superior executive functions in controlling goal-directed persistence and high predictability of implementing imagination and creative thinking during long-chain reasoning.
Collapse
Affiliation(s)
- Li Zhang
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
| | - John Q Gan
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Yanmei Zhu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jing Wang
- School of Computer Science and Information Technology, Xinyang Normal University, Xinyang, Henan, China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Cai L, Wei X, Wang J, Yi G, Lu M, Dong Y. Characterization of network switching in disorder of consciousness at multiple time scales. J Neural Eng 2020; 17:026024. [PMID: 32097898 DOI: 10.1088/1741-2552/ab79f5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Recent works have shown that flexible information processing is closely related to the reconfiguration of human brain networks underlying brain functions. However, the role of network switching for consciousness is poorly explored and whether such transition can indicate the behavioral performance of patients with disorders of consciousness (DOC) remains unknown. Here, we investigate the relationship between the switching of brain networks (states) over time and the consciousness levels. APPROACH By applying multilayer network methods, we calculated time-resolved functional connectivity from source-level EEG data in different frequency bands. At various time scales, we explored how the human brain changes its community structure and traverses across defined network states (integrated and segregated states) in subjects with different consciousness levels. MAIN RESULTS Network switching in the human brain is decreased with increasing time scale opposite to that in random systems. Transitions of community assignment (denoted by flexibility) are negatively correlated with the consciousness levels (particularly in the alpha band) at short time scales. At long time scales, the opposite trend is found. Compared to healthy controls, patients show a new balance between dynamic segregation and integration, with decreased proportion and mean duration of segregated state (contrary to those of integrated state) at small scales. SIGNIFICANCE These findings may contribute to the development of EEG-based network analysis and shed new light on the pathological mechanisms of neurological disorders like DOC.
Collapse
Affiliation(s)
- Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
7
|
Is brain connectome research the future frontier for subjective cognitive decline? A systematic review. Clin Neurophysiol 2019; 130:1762-1780. [PMID: 31401485 DOI: 10.1016/j.clinph.2019.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We performed a systematic literature review on Subjective Cognitive Decline (SCD) in order to examine whether the resemblance of brain connectome and functional connectivity (FC) alterations in SCD with respect to MCI, AD and HC can help us draw conclusions on the progression of SCD to more advanced stages of dementia. METHODS We searched for studies that used any neuroimaging tool to investigate potential differences/similarities of brain connectome in SCD with respect to HC, MCI, and AD. RESULTS Sixteen studies were finally included in the review. Apparent FC connections and disruptions were observed in the white matter, default mode and gray matter networks in SCD with regards to HC, MCI, and AD. Interestingly, more apparent connections in SCD were located over the posterior regions, while an increase of FC over anterior regions was observed as the disease progressed. CONCLUSIONS Elders with SCD display a significant disruption of the brain network, which in most of the cases is worse than HC across multiple network parameters. SIGNIFICANCE The present review provides comprehensive and balanced coverage of a timely target research activity around SCD with the intention to identify similarities/differences across patient groups on the basis of brain connectome properties.
Collapse
|